3 resultados para Data processing service centers -- TFC
Resumo:
BACKGROUND. Bioinformatics is commonly featured as a well assorted list of available web resources. Although diversity of services is positive in general, the proliferation of tools, their dispersion and heterogeneity complicate the integrated exploitation of such data processing capacity. RESULTS. To facilitate the construction of software clients and make integrated use of this variety of tools, we present a modular programmatic application interface (MAPI) that provides the necessary functionality for uniform representation of Web Services metadata descriptors including their management and invocation protocols of the services which they represent. This document describes the main functionality of the framework and how it can be used to facilitate the deployment of new software under a unified structure of bioinformatics Web Services. A notable feature of MAPI is the modular organization of the functionality into different modules associated with specific tasks. This means that only the modules needed for the client have to be installed, and that the module functionality can be extended without the need for re-writing the software client. CONCLUSIONS. The potential utility and versatility of the software library has been demonstrated by the implementation of several currently available clients that cover different aspects of integrated data processing, ranging from service discovery to service invocation with advanced features such as workflows composition and asynchronous services calls to multiple types of Web Services including those registered in repositories (e.g. GRID-based, SOAP, BioMOBY, R-bioconductor, and others).
Resumo:
BACKGROUND Only multifaceted hospital wide interventions have been successful in achieving sustained improvements in hand hygiene (HH) compliance. METHODOLOGY/PRINCIPAL FINDINGS Pre-post intervention study of HH performance at baseline (October 2007-December 2009) and during intervention, which included two phases. Phase 1 (2010) included multimodal WHO approach. Phase 2 (2011) added Continuous Quality Improvement (CQI) tools and was based on: a) Increase of alcohol hand rub (AHR) solution placement (from 0.57 dispensers/bed to 1.56); b) Increase in frequency of audits (three days every three weeks: "3/3 strategy"); c) Implementation of a standardized register form of HH corrective actions; d) Statistical Process Control (SPC) as time series analysis methodology through appropriate control charts. During the intervention period we performed 819 scheduled direct observation audits which provided data from 11,714 HH opportunities. The most remarkable findings were: a) significant improvements in HH compliance with respect to baseline (25% mean increase); b) sustained high level (82%) of HH compliance during intervention; c) significant increase in AHRs consumption over time; c) significant decrease in the rate of healthcare-acquired MRSA; d) small but significant improvements in HH compliance when comparing phase 2 to phase 1 [79.5% (95% CI: 78.2-80.7) vs 84.6% (95% CI:83.8-85.4), p<0.05]; e) successful use of control charts to identify significant negative and positive deviations (special causes) related to the HH compliance process over time ("positive": 90.1% as highest HH compliance coinciding with the "World hygiene day"; and "negative":73.7% as lowest HH compliance coinciding with a statutory lay-off proceeding). CONCLUSIONS/SIGNIFICANCE CQI tools may be a key addition to WHO strategy to maintain a good HH performance over time. In addition, SPC has shown to be a powerful methodology to detect special causes in HH performance (positive and negative) and to help establishing adequate feedback to healthcare workers.
Resumo:
Extended-spectrum β-lactamases (ESBLs) form a heterogeneous group that share the property of hydrolytic activity against the oxyimino-β-lactams while remaining susceptible to inhibition by β-lactamase inhibitors, such as clavulanic acid. From a clinical point of view, they are important because they confer resistance to penicillins, aztreonam, and cephalosporins, and ESBL-producing organisms are typically also resistant to aminoglycosides, trimethoprim-sulfamethoxazole, and quinolones [1]. Until recently, the main problem posed by ESBLs was related to nosocomial outbreaks caused by ESBL-producing Klebsiella species. These outbreaks are usually clonal, the strains are mainly spread through cross-transmission, and the risk factors are similar to those found for other multidrug-resistant nosocomial pathogens [2]. In Europe and the United States, most ESBL-producing Klebsiella isolates harbored enzymes belonging to the TEM and SHV families [3]. Detection of colonized patients by performing surveillance cultures within affected units, isolation precautions for colonized patients, and restriction of oxyimino-β-lactam use are frequently useful for the control of these outbreaks [1]. There is no evidence that hospital-acquired ESBL-producing klebsiellae are decreasing in importance—in fact, data from the Centers for Disease Control and Prevention show that 20.6% of Klebsiella pneumoniae isolates from United States intensive care units in 2003 were probable producers of ESBL [4]. This represented a 47% increase, compared with the preceding 5 years. However, during the last few years, an impressive increase in the number of ESBL-producing Escherichia coli (and, less frequently, other Enterobacteriaceae) is being described in several parts of the world [5–8]. This emergent phenomenon shows some differences from the problem posed by Klebsiella species; many of these ESBL-producing E. coli are isolated …