2 resultados para Data Mining and Machine Learning


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Spain shows the highest bladder cancer incidence rates in men among European countries. The most important risk factors are tobacco smoking and occupational exposure to a range of different chemical substances, such as aromatic amines. METHODS This paper describes the municipal distribution of bladder cancer mortality and attempts to "adjust" this spatial pattern for the prevalence of smokers, using the autoregressive spatial model proposed by Besag, York and Molliè, with relative risk of lung cancer mortality as a surrogate. RESULTS It has been possible to compile and ascertain the posterior distribution of relative risk for bladder cancer adjusted for lung cancer mortality, on the basis of a single Bayesian spatial model covering all of Spain's 8077 towns. Maps were plotted depicting smoothed relative risk (RR) estimates, and the distribution of the posterior probability of RR>1 by sex. Towns that registered the highest relative risks for both sexes were mostly located in the Provinces of Cadiz, Seville, Huelva, Barcelona and Almería. The highest-risk area in Barcelona Province corresponded to very specific municipal areas in the Bages district, e.g., Suría, Sallent, Balsareny, Manresa and Cardona. CONCLUSION Mining/industrial pollution and the risk entailed in certain occupational exposures could in part be dictating the pattern of municipal bladder cancer mortality in Spain. Population exposure to arsenic is a matter that calls for attention. It would be of great interest if the relationship between the chemical quality of drinking water and the frequency of bladder cancer could be studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A workshop was convened to discuss best practices for the assessment of drug-induced liver injury (DILI) in clinical trials. In a breakout session, workshop attendees discussed necessary data elements and standards for the accurate measurement of DILI risk associated with new therapeutic agents in clinical trials. There was agreement that in order to achieve this goal the systematic acquisition of protocol-specified clinical measures and lab specimens from all study subjects is crucial. In addition, standard DILI terms that address the diverse clinical and pathologic signatures of DILI were considered essential. There was a strong consensus that clinical and lab analyses necessary for the evaluation of cases of acute liver injury should be consistent with the US Food and Drug Administration (FDA) guidance on pre-marketing risk assessment of DILI in clinical trials issued in 2009. A recommendation that liver injury case review and management be guided by clinicians with hepatologic expertise was made. Of note, there was agreement that emerging DILI signals should prompt the systematic collection of candidate pharmacogenomic, proteomic and/or metabonomic biomarkers from all study subjects. The use of emerging standardized clinical terminology, CRFs and graphic tools for data review to enable harmonization across clinical trials was strongly encouraged. Many of the recommendations made in the breakout session are in alignment with those made in the other parallel sessions on methodology to assess clinical liver safety data, causality assessment for suspected DILI, and liver safety assessment in special populations (hepatitis B, C, and oncology trials). Nonetheless, a few outstanding issues remain for future consideration.