14 resultados para DNA nick end labeling
Resumo:
Pancreatic beta-cell apoptosis is known to participate in the beta-cell destruction process that occurs in diabetes. It has been described that high glucose level induces a hyperfunctional status which could provoke apoptosis. This phenomenon is known as glucotoxicity and has been proposed that it can play a role in type 1 diabetes mellitus pathogenesis. In this study we develop an experimental design to sensitize pancreatic islet cells by high glucose to streptozotocin (STZ) and proinflammatory cytokines [interleukin (IL)-1beta, tumor necrosis factor (TNF)-alpha and interferon (IFN)-gamma]-induced apoptosis. This method is appropriate for subsequent quantification of apoptotic islet cells stained with Tdt-mediated dUTP Nick-End Labeling (TUNEL) and protein expression assays by Western Blotting (WB).
Resumo:
The European Prospective Investigation into Cancer and nutrition (EPIC) is a long-term, multi-centric prospective study in Europe investigating the relationships between cancer and nutrition. This study has served as a basis for a number of Genome-Wide Association Studies (GWAS) and other types of genetic analyses. Over a period of 5 years, 52,256 EPIC DNA samples have been extracted using an automated DNA extraction platform. Here we have evaluated the pre-analytical factors affecting DNA yield, including anthropometric, epidemiological and technical factors such as center of subject recruitment, age, gender, body-mass index, disease case or control status, tobacco consumption, number of aliquots of buffy coat used for DNA extraction, extraction machine or procedure, DNA quantification method, degree of haemolysis and variations in the timing of sample processing. We show that the largest significant variations in DNA yield were observed with degree of haemolysis and with center of subject recruitment. Age, gender, body-mass index, cancer case or control status and tobacco consumption also significantly impacted DNA yield. Feedback from laboratories which have analyzed DNA with different SNP genotyping technologies demonstrate that the vast majority of samples (approximately 88%) performed adequately in different types of assays. To our knowledge this study is the largest to date to evaluate the sources of pre-analytical variations in DNA extracted from peripheral leucocytes. The results provide a strong evidence-based rationale for standardized recommendations on blood collection and processing protocols for large-scale genetic studies.
Resumo:
To assess the effects of interventions for promoting the use of advance directives (ADs) about end-of-life decisions of adults
Resumo:
In contrast to some extensively examined food mutagens, for example, aflatoxins, N-nitrosamines and heterocyclic amines, some other food contaminants, in particular polycyclic aromatic hydrocarbons (PAH) and other aromatic compounds, have received less attention. Therefore, exploring the relationships between dietary habits and the levels of biomarkers related to exposure to aromatic compounds is highly relevant. We have investigated in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort the association between dietary items (food groups and nutrients) and aromatic DNA adducts and 4-aminobiphenyl-Hb adducts. Both types of adducts are biomarkers of carcinogen exposure and possibly of cancer risk, and were measured, respectively, in leucocytes and erythrocytes of 1086 (DNA adducts) and 190 (Hb adducts) non-smokers. An inverse, statistically significant, association has been found between DNA adduct levels and dietary fibre intake (P = 0·02), vitamin E (P = 0·04) and alcohol (P = 0·03) but not with other nutrients or food groups. Also, an inverse association between fibre and fruit intake, and BMI and 4-aminobiphenyl-Hb adducts (P = 0·03, 0·04, and 0·03 respectively) was observed. After multivariate regression analysis these inverse correlations remained statistically significant, except for the correlation adducts v. fruit intake. The present study suggests that fibre intake in the usual range can modify the level of DNA or Hb aromatic adducts, but such role seems to be quantitatively modest. Fibres could reduce the formation of DNA adducts in different manners, by diluting potential food mutagens and carcinogens in the gastrointestinal tract, by speeding their transit through the colon and by binding carcinogenic substances.
Resumo:
Background. DNA-damage assays, quantifying the initial number of DNA double-strand breaks induced by radiation, have been proposed as a predictive test for radiation-induced toxicity. Determination of radiation-induced apoptosis in peripheral blood lymphocytes by flow cytometry analysis has also been proposed as an approach for predicting normal tissue responses following radiotherapy. The aim of the present study was to explore the association between initial DNA damage, estimated by the number of double-strand breaks induced by a given radiation dose, and the radio-induced apoptosis rates observed. Methods. Peripheral blood lymphocytes were taken from 26 consecutive patients with locally advanced breast carcinoma. Radiosensitivity of lymphocytes was quantified as the initial number of DNA double-strand breaks induced per Gy and per DNA unit (200 Mbp). Radio-induced apoptosis at 1, 2 and 8 Gy was measured by flow cytometry using annexin V/propidium iodide. Results. Radiation-induced apoptosis increased in order to radiation dose and data fitted to a semi logarithmic mathematical model. A positive correlation was found among radio-induced apoptosis values at different radiation doses: 1, 2 and 8 Gy (p < 0.0001 in all cases). Mean DSB/Gy/DNA unit obtained was 1.70 ± 0.83 (range 0.63-4.08; median, 1.46). A statistically significant inverse correlation was found between initial damage to DNA and radio-induced apoptosis at 1 Gy (p = 0.034). A trend toward 2 Gy (p = 0.057) and 8 Gy (p = 0.067) was observed after 24 hours of incubation. Conclusions. An inverse association was observed for the first time between these variables, both considered as predictive factors to radiation toxicity.
Resumo:
INTRODUCTION The objectives were to characterize alveolar fluid clearance (AFC) in pigs with normal lungs and to analyze the effect of immediate application of positive end-expiratory pressure (PEEP). METHODS Animals (n = 25) were mechanically ventilated and divided into four groups: small edema (SE) group, producing pulmonary edema (PE) by intratracheal instillation of 4 ml/kg of saline solution; small edema with PEEP (SE + PEEP) group, same as previous but applying PEEP of 10 cmH2O; large edema (LE) group, producing PE by instillation of 10 ml/kg of saline solution; and large edema with PEEP (LE + PEEP) group, same as LE group but applying PEEP of 10 cmH2O. AFC was estimated from differences in extravascular lung water values obtained by transpulmonary thermodilution method. RESULTS At one hour, AFC was 19.4% in SE group and 18.0% in LE group. In the SE + PEEP group, the AFC rate was higher at one hour than at subsequent time points and higher than in the SE group (45.4% vs. 19.4% at one hour, P < 0.05). The AFC rate was also significantly higher in the LE + PEEP than in the LE group at three hours and four hours. CONCLUSIONS In this pig model, the AFC rate is around 20% at one hour and around 50% at four hours, regardless of the amount of edema, and is increased by the application of PEEP.
Resumo:
INTRODUCTION Radiotherapy outcomes might be further improved by a greater understanding of the individual variations in normal tissue reactions that determine tolerance. Most published studies on radiation toxicity have been performed retrospectively. Our prospective study was launched in 1996 to measure the in vitro radiosensitivity of peripheral blood lymphocytes before treatment with radical radiotherapy in patients with breast cancer, and to assess the early and the late radiation skin side effects in the same group of patients. We prospectively recruited consecutive breast cancer patients receiving radiation therapy after breast surgery. To evaluate whether early and late side effects of radiotherapy can be predicted by the assay, a study was conducted of the association between the results of in vitro radiosensitivity tests and acute and late adverse radiation effects. METHODS Intrinsic molecular radiosensitivity was measured by using an initial radiation-induced DNA damage assay on lymphocytes obtained from breast cancer patients before radiotherapy. Acute reactions were assessed in 108 of these patients on the last treatment day. Late morbidity was assessed after 7 years of follow-up in some of these patients. The Radiation Therapy Oncology Group (RTOG) morbidity score system was used for both assessments. RESULTS Radiosensitivity values obtained using the in vitro test showed no relation with the acute or late adverse skin reactions observed. There was no evidence of a relation between acute and late normal tissue reactions assessed in the same patients. A positive relation was found between the treatment volume and both early and late side effects. CONCLUSION After radiation treatment, a number of cells containing major changes can have a long survival and disappear very slowly, becoming a chronic focus of immunological system stimulation. This stimulation can produce, in a stochastic manner, late radiation-related adverse effects of varying severity. Further research is warranted to identify the major determinants of normal tissue radiation response to make it possible to individualize treatments and improve the outcome of radiotherapy in cancer patients.
Resumo:
BACKGROUND. Either higher levels of initial DNA damage or lower levels of radiation-induced apoptosis in peripheral blood lymphocytes have been associated to increased risk for develop late radiation-induced toxicity. It has been recently published that these two predictive tests are inversely related. The aim of the present study was to investigate the combined role of both tests in relation to clinical radiation-induced toxicity in a set of breast cancer patients treated with high dose hyperfractionated radical radiotherapy. METHODS. Peripheral blood lymphocytes were taken from 26 consecutive patients with locally advanced breast carcinoma treated with high-dose hyperfractioned radical radiotherapy. Acute and late cutaneous and subcutaneous toxicity was evaluated using the Radiation Therapy Oncology Group morbidity scoring schema. The mean follow-up of survivors (n = 13) was 197.23 months. Radiosensitivity of lymphocytes was quantified as the initial number of DNA double-strand breaks induced per Gy and per DNA unit (200 Mbp). Radiation-induced apoptosis (RIA) at 1, 2 and 8 Gy was measured by flow cytometry using annexin V/propidium iodide. RESULTS. Mean DSB/Gy/DNA unit obtained was 1.70 ± 0.83 (range 0.63-4.08; median, 1.46). Radiation-induced apoptosis increased with radiation dose (median 12.36, 17.79 and 24.83 for 1, 2, and 8 Gy respectively). We observed that those "expected resistant patients" (DSB values lower than 1.78 DSB/Gy per 200 Mbp and RIA values over 9.58, 14.40 or 24.83 for 1, 2 and 8 Gy respectively) were at low risk of suffer severe subcutaneous late toxicity (HR 0.223, 95%CI 0.073-0.678, P = 0.008; HR 0.206, 95%CI 0.063-0.677, P = 0.009; HR 0.239, 95%CI 0.062-0.929, P = 0.039, for RIA at 1, 2 and 8 Gy respectively) in multivariate analysis. CONCLUSIONS. A radiation-resistant profile is proposed, where those patients who presented lower levels of initial DNA damage and higher levels of radiation induced apoptosis were at low risk of suffer severe subcutaneous late toxicity after clinical treatment at high radiation doses in our series. However, due to the small sample size, other prospective studies with higher number of patients are needed to validate these results.
Resumo:
ATM and PARP-1 are two of the most important players in the cell's response to DNA damage. PARP-1 and ATM recognize and bound to both single and double strand DNA breaks in response to different triggers. Here we report that ATM and PARP-1 form a molecular complex in vivo in undamaged cells and this association increases after gamma-irradiation. ATM is also modified by PARP-1 during DNA damage. We have also evaluated the impact of PARP-1 absence or inhibition on ATM-kinase activity and have found that while PARP-1 deficient cells display a defective ATM-kinase activity and reduced gamma-H2AX foci formation in response to gamma-irradiation, PARP inhibition on itself is able to activate ATM-kinase. PARP inhibition induced gamma H2AX foci accumulation, in an ATM-dependent manner. Inhibition of PARP also induces DNA double strand breaks which were dependent on the presence of ATM. As consequence ATM deficient cells display an increased sensitivity to PARP inhibition. In summary our results show that while PARP-1 is needed in the response of ATM to gamma irradiation, the inhibition of PARP induces DNA double strand breaks (which are resolved in and ATM-dependent pathway) and activates ATM kinase.
Resumo:
The molecular basis underlying the aberrant DNA-methylation patterns in human cancer is largely unknown. Altered DNA methyltransferase (DNMT) activity is believed to contribute, as DNMT expression levels increase during tumorigenesis. Here, we present evidence that the expression of DNMT3b is post-transcriptionally regulated by HuR, an RNA-binding protein that stabilizes and/or modulates the translation of target mRNAs. The presence of a putative HuR-recognition motif in the DNMT3b 3'UTR prompted studies to investigate if this transcript associated with HuR. The interaction between HuR and DNMT3b mRNA was studied by immunoprecipitation of endogenous HuR ribonucleoprotein complexes followed by RT-qPCR detection of DNMT3b mRNA, and by in vitro pulldown of biotinylated DNMT3b RNAs followed by western blotting detection of HuR. These studies revealed that binding of HuR stabilized the DNMT3b mRNA and increased DNMT3b expression. Unexpectedly, cisplatin treatment triggered the dissociation of the [HuR-DNMT3b mRNA] complex, in turn promoting DNMT3b mRNA decay, decreasing DNMT3b abundance, and lowering the methylation of repeated sequences and global DNA methylation. In summary, our data identify DNMT3b mRNA as a novel HuR target, present evidence that HuR affects DNMT3b expression levels post-transcriptionally, and reveal the functional consequences of the HuR-regulated DNMT3b upon DNA methylation patterns.
Resumo:
BACKGROUND Taxanes are among the most active drugs for the treatment of metastatic breast cancer, and, as a consequence, they have also been studied in the adjuvant setting. METHODS After breast cancer surgery, women with lymph node-positive disease were randomly assigned to treatment with fluorouracil, epirubicin, and cyclophosphamide (FEC) or with FEC followed by weekly paclitaxel (FEC-P). The primary endpoint of study-5-year disease-free survival (DFS)-was assessed by Kaplan-Meier analysis. Secondary endpoints included overall survival and analysis of the prognostic and predictive value of clinical and molecular (hormone receptors by immunohistochemistry and HER2 by fluorescence in situ hybridization) markers. Associations and interactions were assessed with a multivariable Cox proportional hazards model for DFS for the following covariates: age, menopausal status, tumor size, lymph node status, type of chemotherapy, tumor size, positive lymph nodes, HER2 status, and hormone receptor status. All statistical tests were two-sided. RESULTS Among the 1246 eligible patients, estimated rates of DFS at 5 years were 78.5% in the FEC-P arm and 72.1% in the FEC arm (difference = 6.4%, 95% confidence interval [CI] = 1.6% to 11.2%; P = .006). FEC-P treatment was associated with a 23% reduction in the risk of relapse compared with FEC treatment (146 relapses in the 614 patients in the FEC-P arm vs 193 relapses in the 632 patients in the FEC arm, hazard ratio [HR] = 0.77, 95% CI = 0.62 to 0.95; P = .022) and a 22% reduction in the risk of death (73 and 95 deaths, respectively, HR = 0.78, 95% CI = 0.57 to 1.06; P = .110). Among the 928 patients for whom tumor samples were centrally analyzed, type of chemotherapy (FEC vs FEC-P) (P = .017), number of involved axillary lymph nodes (P < .001), tumor size (P = .020), hormone receptor status (P = .004), and HER2 status (P = .006) were all associated with DFS. We found no statistically significant interaction between HER2 status and paclitaxel treatment or between hormone receptor status and paclitaxel treatment. CONCLUSIONS Among patients with operable breast cancer, FEC-P treatment statistically significantly reduced the risk of relapse compared with FEC as adjuvant therapy.
Resumo:
INTRODUCTION Associations of hormone-receptor positive breast cancer with excess adiposity are reasonably well characterized; however, uncertainty remains regarding the association of body mass index (BMI) with hormone-receptor negative malignancies, and possible interactions by hormone replacement therapy (HRT) use. METHODS Within the European EPIC cohort, Cox proportional hazards models were used to describe the relationship of BMI, waist and hip circumferences with risk of estrogen-receptor (ER) negative and progesterone-receptor (PR) negative (n = 1,021) and ER+PR+ (n = 3,586) breast tumors within five-year age bands. Among postmenopausal women, the joint effects of BMI and HRT use were analyzed. RESULTS For risk of ER-PR- tumors, there was no association of BMI across the age bands. However, when analyses were restricted to postmenopausal HRT never users, a positive risk association with BMI (third versus first tertile HR = 1.47 (1.01 to 2.15)) was observed. BMI was inversely associated with ER+PR+ tumors among women aged ≤49 years (per 5 kg/m2 increase, HR = 0.79 (95%CI 0.68 to 0.91)), and positively associated with risk among women ≥65 years (HR = 1.25 (1.16 to 1.34)). Adjusting for BMI, waist and hip circumferences showed no further associations with risks of breast cancer subtypes. Current use of HRT was significantly associated with an increased risk of receptor-negative (HRT current use compared to HRT never use HR: 1.30 (1.05 to 1.62)) and positive tumors (HR: 1.74 (1.56 to 1.95)), although this risk increase was weaker for ER-PR- disease (Phet = 0.035). The association of HRT was significantly stronger in the leaner women (BMI ≤22.5 kg/m2) than for more overweight women (BMI ≥25.9 kg/m2) for, both, ER-PR- (HR: 1.74 (1.15 to 2.63)) and ER+PR+ (HR: 2.33 (1.84 to 2.92)) breast cancer and was not restricted to any particular HRT regime. CONCLUSIONS An elevated BMI may be positively associated with risk of ER-PR- tumors among postmenopausal women who never used HRT. Furthermore, postmenopausal HRT users were at an increased risk of ER-PR- as well as ER+PR+ tumors, especially among leaner women. For hormone-receptor positive tumors, but not for hormone-receptor negative tumors, our study confirms an inverse association of risk with BMI among young women of premenopausal age. Our data provide evidence for a possible role of sex hormones in the etiology of hormone-receptor negative tumors.
Resumo:
BACKGROUND Differences in the distribution of genotypes between individuals of the same ethnicity are an important confounder factor commonly undervalued in typical association studies conducted in radiogenomics. OBJECTIVE To evaluate the genotypic distribution of SNPs in a wide set of Spanish prostate cancer patients for determine the homogeneity of the population and to disclose potential bias. DESIGN SETTING AND PARTICIPANTS A total of 601 prostate cancer patients from Andalusia, Basque Country, Canary and Catalonia were genotyped for 10 SNPs located in 6 different genes associated to DNA repair: XRCC1 (rs25487, rs25489, rs1799782), ERCC2 (rs13181), ERCC1 (rs11615), LIG4 (rs1805388, rs1805386), ATM (rs17503908, rs1800057) and P53 (rs1042522). The SNP genotyping was made in a Biotrove OpenArray® NT Cycler. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Comparisons of genotypic and allelic frequencies among populations, as well as haplotype analyses were determined using the web-based environment SNPator. Principal component analysis was made using the SnpMatrix and XSnpMatrix classes and methods implemented as an R package. Non-supervised hierarchical cluster of SNP was made using MultiExperiment Viewer. RESULTS AND LIMITATIONS We observed that genotype distribution of 4 out 10 SNPs was statistically different among the studied populations, showing the greatest differences between Andalusia and Catalonia. These observations were confirmed in cluster analysis, principal component analysis and in the differential distribution of haplotypes among the populations. Because tumor characteristics have not been taken into account, it is possible that some polymorphisms may influence tumor characteristics in the same way that it may pose a risk factor for other disease characteristics. CONCLUSION Differences in distribution of genotypes within different populations of the same ethnicity could be an important confounding factor responsible for the lack of validation of SNPs associated with radiation-induced toxicity, especially when extensive meta-analysis with subjects from different countries are carried out.