2 resultados para Cyclic Nucleotide Phosphodiesterases


Relevância:

80.00% 80.00%

Publicador:

Resumo:

CONTEXT: Primary pigmented nodular adrenocortical disease (PPNAD), a rare cause of corticotropin-independent Cushing syndrome, can be part of Carney complex (CNC), an autosomal dominant multiple neoplasia syndrome characterized by spotty skin pigmentation, cardiac myxomas, and endocrine tumors or be isolated (i). Germline PRKAR1A-inactivating mutations have been observed in both CNC and iPPNAD, but with no apparent genotype-phenotype correlation. OBJECTIVE:The objectives of the study were a detailed phenotyping for CNC manifestations in 12 kindreds bearing the same PRKAR1A mutation and a study of the consequences of the mutation and a potential founder effect. DESIGN: The study consisted of descriptive case reports. SETTING: The study was conducted at two referral centers. PATIENTS: The patients described in this study were referred for PRKAR1A gene mutation analysis because of a diagnosis of apparently iPPNAD. RESULTS: We describe a 6-bp polypyrimidine tract deletion [exon 7 IVS del (-7-->-2)] in 12 unrelated kindreds that were referred for Cushing syndrome due to PPNAD. Nine of the patients had no family history; in two, there was a family history of iPPNAD. Only one patient met the criteria for CNC. Relatives carrying the same mutation had no manifestations of CNC or PPNAD, suggesting a low penetrance of this PRKAR1A defect. A founder effect was excluded by extensive genotyping of chromosome 17 markers. CONCLUSIONS: In conclusion, a small intronic deletion of the PRKAR1A gene is a low-penetrance cause of mainly iPPNAD; it is the first PRKAR1A genetic defect to have an association with a specific phenotype.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Leptin, a 16-kDa protein mainly produced by adipose tissue, has been involved in the control of energy balance through its hypothalamic receptor. However, pleiotropic effects of leptin have been identified in reproduction and pregnancy, particularly in placenta, where it was found to be expressed. In the current study, we examined the effect of cAMP in the regulation of leptin expression in trophoblastic cells. We found that dibutyryl cAMP [(Bu)(2)cAMP], a cAMP analog, showed an inducing effect on endogenous leptin expression in BeWo and JEG-3 cell lines when analyzed by Western blot analysis and quantitative RT-PCR. Maximal effect was achieved at 100 microM. Leptin promoter activity was also stimulated, evaluated by transient transfection with a reporter plasmid construction. Similar results were obtained with human term placental explants, thus indicating physiological relevance. Because cAMP usually exerts its actions through activation of protein kinase A (PKA) signaling, this pathway was analyzed. We found that cAMP response element-binding protein (CREB) phosphorylation was significantly increased with (Bu)(2)cAMP treatment. Furthermore, cotransfection with the catalytic subunit of PKA and/or the transcription factor CREB caused a significant stimulation on leptin promoter activity. On the other hand, the cotransfection with a dominant negative mutant of the regulatory subunit of PKA inhibited leptin promoter activity. We determined that cAMP effect could be blocked by pharmacologic inhibition of PKA or adenylyl ciclase in BeWo cells and in human placental explants. Thereafter, we decided to investigate the involvement of the MAPK/ERK signaling pathway in the cAMP effect on leptin induction. We found that 50 microm PD98059, a MAPK kinase inhibitor, partially blocked leptin induction by cAMP, measured both by Western blot analysis and reporter transient transfection assay. Moreover, ERK 1/2 phosphorylation was significantly increased with (Bu)(2)cAMP treatment, and this effect was dose dependent. Finally, we observed that 50 microm PD98059 inhibited cAMP-dependent phosphorylation of CREB in placental explants. In summary, we provide some evidence suggesting that cAMP induces leptin expression in placental cells and that this effect seems to be mediated by a cross talk between PKA and MAPK signaling pathways.