2 resultados para Classification Methods


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aims: To evaluate whether ki-67 labelling index (LI) has independent prognostic value for survival of patients with bladder urothelial tumours graded according to the 2004 World Health Organisation classification. Methods: Ki-67 LI was evaluated in 164 cases using the grid counting method. Non-invasive (stage Ta) tumours were: papilloma (n = 5), papillary urothelial neoplasia of low malignant potential (PUNLMP; n = 26), and low (LG; n = 34) or high grade (HG; n = 15) papillary urothelial carcinoma. Early invasive (stage T1) tumours were: LG (n = 58) and HG (n = 26) carcinoma. Statistical analysis included Fisher and x2 tests, and mean comparisons by ANOVA and t test. Univariate and multivariate survival analyses were performed according to the Kaplan–Meier method with log rank test and Cox’s proportional hazard method. Results: Mean ki-67 LI increased from papilloma to PUNLMP, LG, and HG in stage Ta (p,0.0001) and from LG to HG in stage T1 (p = 0.013) tumours. High tumour proliferation (.13%) was related to greater tumour size (p = 0.036), recurrence (p = 0.036), progression (p = 0.035), survival (p = 0.054), and high p53 accumulation (p = 0.015). Ki-67 LI and tumour size were independent predictors of disease free survival (DFS), but only ki-67 LI was related to progression free survival (PFS). Cancer specific overall survival (OS) was related to ki-67 LI, tumour size, and p27kip1 downregulation. Ki-67 LI was the main independent predictor of DFS (p = 0.0005), PFS (p = 0.0162), and cancer specific OS (p = 00195). Conclusion: Tumour proliferation measured by Ki-67 LI is related to tumour recurrence, stage progression, and is an independent predictor of DFS, PFS, and cancer specific OS in TaT1 bladder urothelial cell carcinoma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Breast cancer is a heterogeneous disease with varied morphological appearances, molecular features, behavior, and response to therapy. Current routine clinical management of breast cancer relies on the availability of robust clinical and pathological prognostic and predictive factors to support clinical and patient decision making in which potentially suitable treatment options are increasingly available. One of the best-established prognostic factors in breast cancer is histological grade, which represents the morphological assessment of tumor biological characteristics and has been shown to be able to generate important information related to the clinical behavior of breast cancers. Genome-wide microarray-based expression profiling studies have unraveled several characteristics of breast cancer biology and have provided further evidence that the biological features captured by histological grade are important in determining tumor behavior. Also, expression profiling studies have generated clinically useful data that have significantly improved our understanding of the biology of breast cancer, and these studies are undergoing evaluation as improved prognostic and predictive tools in clinical practice. Clinical acceptance of these molecular assays will require them to be more than expensive surrogates of established traditional factors such as histological grade. It is essential that they provide additional prognostic or predictive information above and beyond that offered by current parameters. Here, we present an analysis of the validity of histological grade as a prognostic factor and a consensus view on the significance of histological grade and its role in breast cancer classification and staging systems in this era of emerging clinical use of molecular classifiers.