5 resultados para Chain sequences
Resumo:
The use of molecular tools for genotyping Mycobacterium tuberculosis isolates in epidemiological surveys in order to identify clustered and orphan strains requires faster response times than those offered by the reference method, IS6110 restriction fragment length polymorphism (RFLP) genotyping. A method based on PCR, the mycobacterial interspersed repetitive-unit-variable-number tandem-repeat (MIRU-VNTR) genotyping technique, is an option for fast fingerprinting of M. tuberculosis, although precise evaluations of correlation between MIRU-VNTR and RFLP findings in population-based studies in different contexts are required before the methods are switched. In this study, we evaluated MIRU-VNTR genotyping (with a set of 15 loci [MIRU-15]) in parallel to RFLP genotyping in a 39-month universal population-based study in a challenging setting with a high proportion of immigrants. For 81.9% (281/343) of the M. tuberculosis isolates, both RFLP and MIRU-VNTR types were obtained. The percentages of clustered cases were 39.9% (112/281) and 43.1% (121/281) for RFLP and MIRU-15 analyses, and the numbers of clusters identified were 42 and 45, respectively. For 85.4% of the cases, the RFLP and MIRU-15 results were concordant, identifying the same cases as clustered and orphan (kappa, 0.7). However, for the remaining 14.6% of the cases, discrepancies were observed: 16 of the cases clustered by RFLP analysis were identified as orphan by MIRU-15 analysis, and 25 cases identified as orphan by RFLP analysis were clustered by MIRU-15 analysis. When discrepant cases showing subtle genotypic differences were tolerated, the discrepancies fell from 14.6% to 8.6%. Epidemiological links were found for 83.8% of the cases clustered by both RFLP and MIRU-15 analyses, whereas for the cases clustered by RFLP or MIRU-VNTR analysis alone, links were identified for only 30.8% or 38.9% of the cases, respectively. The latter group of cases mainly comprised isolates that could also have been clustered, if subtle genotypic differences had been tolerated. MIRU-15 genotyping seems to be a good alternative to RFLP genotyping for real-time interventional schemes. The correlation between MIRU-15 and IS6110 RFLP findings was reasonable, although some uncertainties as to the assignation of clusters by MIRU-15 analysis were identified.
Resumo:
BACKGROUND. The phenomenon of misdiagnosing tuberculosis (TB) by laboratory cross-contamination when culturing Mycobacterium tuberculosis (MTB) has been widely reported and it has an obvious clinical, therapeutic and social impact. The final confirmation of a cross-contamination event requires the molecular identification of the same MTB strain cultured from both the potential source of the contamination and from the false-positive candidate. The molecular tool usually applied in this context is IS6110-RFLP which takes a long time to provide an answer, usually longer than is acceptable for microbiologists and clinicians to make decisions. Our purpose in this study is to evaluate a novel PCR-based method, MIRU-VNTR as an alternative to assure a rapid and optimized analysis of cross-contamination alerts. RESULTS. MIRU-VNTR was prospectively compared with IS6110-RFLP for clarifying 19 alerts of false positivity from other laboratories. MIRU-VNTR highly correlated with IS6110-RFLP, reduced the response time by 27 days and clarified six alerts unresolved by RFLP. Additionally, MIRU-VNTR revealed complex situations such as contamination events involving polyclonal isolates and a false-positive case due to the simultaneous cross-contamination from two independent sources. CONCLUSION. Unlike standard RFLP-based genotyping, MIRU-VNTR i) could help reduce the impact of a false positive diagnosis of TB, ii) increased the number of events that could be solved and iii) revealed the complexity of some cross-contamination events that could not be dissected by IS6110-RFLP.
Resumo:
Background: Both brucellosis and tuberculosis are chronic-debilitating systemic granulomatous diseases with a high incidence in many countries in Africa, Central and South America, the Middle East and the Indian subcontinent. Certain focal complications of brucellosis and extrapulmonary tuberculosis are very difficult to differentiate clinically, biologically and radiologically. As the conventional microbiological methods for the diagnosis of the two diseases have many limitations, as well as being time-consuming, multiplex real time PCR (M RT-PCR) could be a promising and practical approach to hasten the differential diagnosis and improve prognosis. Methodology/Principal Findings: We designed a SYBR Green single-tube multiplex real-time PCR protocol targeting bcsp31 and the IS711 sequence detecting all pathogenic species and biovars of Brucella genus, the IS6110 sequence detecting Mycobacterium genus, and the intergenic region senX3-regX3 specifically detecting Mycobacterium tuberculosis complex. The diagnostic yield of the M RT-PCR with the three pairs of resultant amplicons was then analyzed in 91 clinical samples corresponding to 30 patients with focal complications of brucellosis, 24 patients with extrapulmonary tuberculosis, and 36 patients (Control Group) with different infectious, autoimmune or neoplastic diseases. Thirty-five patients had vertebral osteomyelitis, 21 subacute or chronic meningitis or meningoencephalitis, 13 liver or splenic abscess, eight orchiepididymitis, seven subacute or chronic arthritis, and the remaining seven samples were from different locations. Of the three pairs of amplicons (senX3-regX3+ bcsp3, senX3-regX3+ IS711 and IS6110+ IS711) only senX3-regX3+ IS711 was 100% specific for both the Brucella genus and M. tuberculosis complex. For all the clinical samples studied, the overall sensitivity, specificity, and positive and negative predictive values of the M RT-PCR assay were 89.1%, 100%, 85.7% and 100%, respectively, with an accuracy of 93.4%, (95% CI, 88.3—96.5%). Conclusions/Significance: In this study, a M RT-PCR strategy with species-specific primers based on senX3-regX3+IS711 sequences proved to be a sensitive and specific test, useful for the highly efficient detection of M. tuberculosis and Brucella spp in very different clinical samples. It thus represents an advance in the differential diagnosis between some forms of extrapulmonary tuberculosis and focal complications of brucellosis.
Resumo:
OBJECTIVES To evaluate the advantages of cytology and PCR of high-risk human papilloma virus (PCR HR-HPV) infection in biopsy-derived diagnosis of high-grade squamous intraepithelial lesions (HSIL = AIN2/AIN3) in HIV-positive men having sex with men (MSM). METHODS This is a single-centered study conducted between May 2010 and May 2014 in patients (n = 201, mean age 37 years) recruited from our outpatient clinic. Samples of anal canal mucosa were taken into liquid medium for PCR HPV analysis and for cytology. Anoscopy was performed for histology evaluation. RESULTS Anoscopy showed 33.8% were normal, 47.8% low-grade squamous intraepithelial lesions (LSIL), and 18.4% HSIL; 80.2% had HR-HPV. PCR of HR-HPV had greater sensitivity than did cytology (88.8% vs. 75.7%) in HSIL screening, with similar positive (PPV) and negative predictive value (NPV) of 20.3 vs. 22.9 and 89.7 vs. 88.1, respectively. Combining both tests increased the sensitivity and NPV of HSIL diagnosis to 100%. Correlation of cytology vs. histology was, generally, very low and PCR of HR-HPV vs. histology was non-existent (<0.2) or low (<0.4). Area under the receiver operating characteristics (AUROC) curve analysis of cytology and PCR HR-HPV for the diagnosis of HSIL was poor (<0.6). Multivariate regression analysis showed protective factors against HSIL were: viral suppression (OR: 0.312; 95%CI: 0.099-0.984), and/or syphilis infection (OR: 0.193; 95%CI: 0.045-0.827). HSIL risk was associated with HPV-68 genotype (OR: 20.1; 95%CI: 2.04-197.82). CONCLUSIONS When cytology and PCR HR-HPV findings are normal, the diagnosis of pre-malignant HSIL can be reliably ruled-out in HIV-positive patients. HPV suppression with treatment protects against the appearance of HSIL.
Resumo:
OBJECTIVE We investigated the association between the proportion of long-chain n-3 polyunsaturated fatty acids (PUFA) in plasma phospholipids from blood samples drawn at enrollment and subsequent change in body weight. Sex, age, and BMI were considered as potential effect modifiers. METHOD A total of 1,998 women and men participating in the European Prospective Investigation into Cancer and Nutrition (EPIC) were followed for a median of 4.9 years. The associations between the proportion of plasma phospholipid long-chain n-3 PUFA and change in weight were investigated using mixed-effect linear regression. RESULTS The proportion of long-chain n-3 PUFA was not associated with change in weight. Among all participants, the 1-year weight change was -0.7 g per 1% point higher long-chain n-3 PUFA level (95% confidence interval: -20.7 to 19.3). The results when stratified by sex, age, or BMI groups were not systematically different. CONCLUSION The results of this study suggest that the proportion of long-chain n-3 PUFA in plasma phospholipids is not associated with subsequent change in body weight within the range of exposure in the general population.