2 resultados para Caveolin-1-deficient Mice


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Caveolae are involved in physical compartmentalization between different groups of signaling events. Its main component, CAV1, modulates different pathways in cellular physiology. The emerging evidence pointing to the role of CAV1 in cancer led us to study whether different alleles of this gene are associated with colorectal cancer (CRC). Since one of the most characterized enzymes regulated by CAV1 is eNOS, we decided to include both genes in this study. We analyzed five SNPs in 360 unrelated CRC patients and 550 controls from the general population. Two of these SNPs were located within eNOS and three within the CAV1 gene. Although haplotype distribution was not associated with CRC, haplotype TiA (CAV1) was associated with familiar forms of CRC (p<0.05). This was especially evident in CRC antecedents and nuclear forms of CRC. If both CG (eNOS) and TiA (CAV1) haplotypes were taken together, this association increased in significance. Thus, we propose that CAV1, either alone or together with eNOS alleles, might modify CRC heritability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ATM and PARP-1 are two of the most important players in the cell's response to DNA damage. PARP-1 and ATM recognize and bound to both single and double strand DNA breaks in response to different triggers. Here we report that ATM and PARP-1 form a molecular complex in vivo in undamaged cells and this association increases after gamma-irradiation. ATM is also modified by PARP-1 during DNA damage. We have also evaluated the impact of PARP-1 absence or inhibition on ATM-kinase activity and have found that while PARP-1 deficient cells display a defective ATM-kinase activity and reduced gamma-H2AX foci formation in response to gamma-irradiation, PARP inhibition on itself is able to activate ATM-kinase. PARP inhibition induced gamma H2AX foci accumulation, in an ATM-dependent manner. Inhibition of PARP also induces DNA double strand breaks which were dependent on the presence of ATM. As consequence ATM deficient cells display an increased sensitivity to PARP inhibition. In summary our results show that while PARP-1 is needed in the response of ATM to gamma irradiation, the inhibition of PARP induces DNA double strand breaks (which are resolved in and ATM-dependent pathway) and activates ATM kinase.