7 resultados para Cavarero, Adriana
Resumo:
BACKGROUND Differences in the distribution of genotypes between individuals of the same ethnicity are an important confounder factor commonly undervalued in typical association studies conducted in radiogenomics. OBJECTIVE To evaluate the genotypic distribution of SNPs in a wide set of Spanish prostate cancer patients for determine the homogeneity of the population and to disclose potential bias. DESIGN SETTING AND PARTICIPANTS A total of 601 prostate cancer patients from Andalusia, Basque Country, Canary and Catalonia were genotyped for 10 SNPs located in 6 different genes associated to DNA repair: XRCC1 (rs25487, rs25489, rs1799782), ERCC2 (rs13181), ERCC1 (rs11615), LIG4 (rs1805388, rs1805386), ATM (rs17503908, rs1800057) and P53 (rs1042522). The SNP genotyping was made in a Biotrove OpenArray® NT Cycler. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Comparisons of genotypic and allelic frequencies among populations, as well as haplotype analyses were determined using the web-based environment SNPator. Principal component analysis was made using the SnpMatrix and XSnpMatrix classes and methods implemented as an R package. Non-supervised hierarchical cluster of SNP was made using MultiExperiment Viewer. RESULTS AND LIMITATIONS We observed that genotype distribution of 4 out 10 SNPs was statistically different among the studied populations, showing the greatest differences between Andalusia and Catalonia. These observations were confirmed in cluster analysis, principal component analysis and in the differential distribution of haplotypes among the populations. Because tumor characteristics have not been taken into account, it is possible that some polymorphisms may influence tumor characteristics in the same way that it may pose a risk factor for other disease characteristics. CONCLUSION Differences in distribution of genotypes within different populations of the same ethnicity could be an important confounding factor responsible for the lack of validation of SNPs associated with radiation-induced toxicity, especially when extensive meta-analysis with subjects from different countries are carried out.
Resumo:
Amoxicillin, a low-molecular-weight compound, is able to interact with dendritic cells inducing semi-maturation in vitro. Specific antigens and TLR ligands can synergistically interact with dendritic cells (DC), leading to complete maturation and more efficient T-cell stimulation. The aim of the study was to evaluate the synergistic effect of amoxicillin and the TLR2, 4 and 7/8 agonists (PAM, LPS and R848, respectively) in TLR expression, DC maturation and specific T-cell response in patients with delayed-type hypersensitivity (DTH) reactions to amoxicillin. Monocyte-derived DC from 15 patients with DTH to amoxicillin and 15 controls were cultured with amoxicillin in the presence or absence of TLR2, 4 and 7/8 agonists (PAM, LPS and R848, respectively). We studied TLR1-9 gene expression by RT-qPCR, and DC maturation, lymphocyte proliferation and cytokine production by flow cytometry. DC from both patients and controls expressed all TLRs except TLR9. The amoxicillin plus TLR2/4 or TLR7/8 ligands showed significant differences, mainly in patients: AX+PAM+LPS induced a decrease in TLR2 and AX+R848 in TLR2, 4, 7 and 8 mRNA levels. AX+PAM+LPS significantly increased the percentage of maturation in patients (75%) vs. controls (40%) (p=0.036) and T-cell proliferation (80.7% vs. 27.3% of cases; p=0.001). Moreover, the combinations AX+PAM+LPS and AX+R848 produced a significant increase in IL-12p70 during both DC maturation and T-cell proliferation. These results indicate that in amoxicillin-induced maculopapular exanthema, the presence of different TLR agonists could be critical for the induction of the innate and adaptive immune responses and this should be taken into account when evaluating allergic reactions to these drugs.
Resumo:
INTRODUCTION We functionally analyzed a frameshift mutation in the SCN5A gene encoding cardiac Na(+) channels (Nav1.5) found in a proband with repeated episodes of ventricular fibrillation who presented bradycardia and paroxysmal atrial fibrillation. Seven relatives also carry the mutation and showed a Brugada syndrome with an incomplete and variable expression. The mutation (p.D1816VfsX7) resulted in a severe truncation (201 residues) of the Nav1.5 C-terminus. METHODS AND RESULTS Wild-type (WT) and mutated Nav1.5 channels together with hNavβ1 were expressed in CHO cells and currents were recorded at room temperature using the whole-cell patch-clamp. Expression of p.D1816VfsX7 alone resulted in a marked reduction (≈90%) in peak Na(+) current density compared with WT channels. Peak current density generated by p.D1816VfsX7+WT was ≈50% of that generated by WT channels. p.D1816VfsX7 positively shifted activation and inactivation curves, leading to a significant reduction of the window current. The mutation accelerated current activation and reactivation kinetics and increased the fraction of channels developing slow inactivation with prolonged depolarizations. However, late INa was not modified by the mutation. p.D1816VfsX7 produced a marked reduction of channel trafficking toward the membrane that was not restored by decreasing incubation temperature during cell culture or by incubation with 300 μM mexiletine and 5 mM 4-phenylbutirate. CONCLUSION Despite a severe truncation of the C-terminus, the resulting mutated channels generate currents, albeit with reduced amplitude and altered biophysical properties, confirming the key role of the C-terminal domain in the expression and function of the cardiac Na(+) channel.
Resumo:
Two hundred twelve patients with colonization/infection due to amoxicillin-clavulanate (AMC)-resistant Escherichia coli were studied. OXA-1- and inhibitor-resistant TEM (IRT)-producing strains were associated with urinary tract infections, while OXA-1 producers and chromosomal AmpC hyperproducers were associated with bacteremic infections. AMC resistance in E. coli is a complex phenomenon with heterogeneous clinical implications.
Resumo:
We conducted a prospective multicenter study in Spain to characterize the mechanisms of resistance to amoxicillin-clavulanate (AMC) in Escherichia coli. Up to 44 AMC-resistant E. coli isolates (MIC ≥ 32/16 μg/ml) were collected at each of the seven participant hospitals. Resistance mechanisms were characterized by PCR and sequencing. Molecular epidemiology was studied by pulsed-field gel electrophoresis (PFGE) and by multilocus sequence typing. Overall AMC resistance was 9.3%. The resistance mechanisms detected in the 257 AMC-resistant isolates were OXA-1 production (26.1%), hyperproduction of penicillinase (22.6%), production of plasmidic AmpC (19.5%), hyperproduction of chromosomic AmpC (18.3%), and production of inhibitor-resistant TEM (IRT) (17.5%). The IRTs identified were TEM-40 (33.3%), TEM-30 (28.9%), TEM-33 (11.1%), TEM-32 (4.4%), TEM-34 (4.4%), TEM-35 (2.2%), TEM-54 (2.2%), TEM-76 (2.2%), TEM-79 (2.2%), and the new TEM-185 (8.8%). By PFGE, a high degree of genetic diversity was observed although two well-defined clusters were detected in the OXA-1-producing isolates: the C1 cluster consisting of 19 phylogroup A/sequence type 88 [ST88] isolates and the C2 cluster consisting of 19 phylogroup B2/ST131 isolates (16 of them producing CTX-M-15). Each of the clusters was detected in six different hospitals. In total, 21.8% of the isolates were serotype O25b/phylogroup B2 (O25b/B2). AMC resistance in E. coli is widespread in Spain at the hospital and community levels. A high prevalence of OXA-1 was found. Although resistant isolates were genetically diverse, clonality was linked to OXA-1-producing isolates of the STs 88 and 131. Dissemination of IRTs was frequent, and the epidemic O25b/B2/ST131 clone carried many different mechanisms of AMC resistance.
Resumo:
Allergic reactions towards β-lactam antibiotics pose an important clinical problem. The ability of small molecules, such as a β-lactams, to bind covalently to proteins, in a process known as haptenation, is considered necessary for induction of a specific immunological response. Identification of the proteins modified by β-lactams and elucidation of the relevance of this process in allergic reactions requires sensitive tools. Here we describe the preparation and characterization of a biotinylated amoxicillin analog (AX-B) as a tool for the study of protein haptenation by amoxicillin (AX). AX-B, obtained by the inclusion of a biotin moiety at the lateral chain of AX, showed a chemical reactivity identical to AX. Covalent modification of proteins by AX-B was reduced by excess AX and vice versa, suggesting competition for binding to the same targets. From an immunological point of view, AX and AX-B behaved similarly in RAST inhibition studies with sera of patients with non-selective allergy towards β-lactams, whereas, as expected, competition by AX-B was poorer with sera of AX-selective patients, which recognize AX lateral chain. Use of AX-B followed by biotin detection allowed the observation of human serum albumin (HSA) modification by concentrations 100-fold lower that when using AX followed by immunological detection. Incubation of human serum with AX-B led to the haptenation of all of the previously identified major AX targets. In addition, some new targets could be detected. Interestingly, AX-B allowed the detection of intracellular protein adducts, which showed a cell type-specific pattern. This opens the possibility of following the formation and fate of AX-B adducts in cells. Thus, AX-B may constitute a valuable tool for the identification of AX targets with high sensitivity as well as for the elucidation of the mechanisms involved in allergy towards β-lactams.
Resumo:
While treatment of keloids and hypertrophic scars normally shows modest results, we found that treatment with bleomycin was more promising. The present study was divided into two parts. In the first part the aim was to show the results using a combination of bleomycin and triamcinolone acetonide per cm2 (BTA). In the second part the objective was to determine the response to both drugs in large keloids that were divided into 1 cm2 squares, treating each square with the dose previously used. In the first part of the study, the clinical response of 37 keloids ranging from 0.3 to 1.8 cm2 treated with BTA were followed up over a period of 1- 2 years. 0.375 IU bleomycin and 4 mg triamcinolone acetonide were injected every 3 months. In the second part of the study we reviewed the clinical response in six patients with large keloids. The monthly dose administered never exceeded 3 IU of bleomycin. The first study showed 36 keloids (97.29%) softening after the first dose. In the second study, 5 showed different responses (the response was complete in the four smaller keloids). The largest keloid needed 9 doses to achieve an improvement of 70%. In conclusion, combined treatment with 0.375 IU of bleomycin and 4mg of triamcinolone acetonide to 1 cm2 was considered to be an acceptable procedure for the treatment of keloids. The best results were obtained in keloids over 1 cm2 or when divided into 1 cm2 square areas. Larger series need to be performed in order to confirm these results..