2 resultados para Carbohidratos fermentables
Resumo:
BACKGROUND The effect of the macronutrient composition of the usual diet on long term weight maintenance remains controversial. METHODS 373,803 subjects aged 25-70 years were recruited in 10 European countries (1992-2000) in the PANACEA project of the EPIC cohort. Diet was assessed at baseline using country-specific validated questionnaires and weight and height were measured at baseline and self-reported at follow-up in most centers. The association between weight change after 5 years of follow-up and the iso-energetic replacement of 5% of energy from one macronutrient by 5% of energy from another macronutrient was assessed using multivariate linear mixed-models. The risk of becoming overweight or obese after 5 years was investigated using multivariate Poisson regressions stratified according to initial Body Mass Index. RESULTS A higher proportion of energy from fat at the expense of carbohydrates was not significantly associated with weight change after 5 years. However, a higher proportion of energy from protein at the expense of fat was positively associated with weight gain. A higher proportion of energy from protein at the expense of carbohydrates was also positively associated with weight gain, especially when carbohydrates were rich in fibre. The association between percentage of energy from protein and weight change was slightly stronger in overweight participants, former smokers, participants ≥60 years old, participants underreporting their energy intake and participants with a prudent dietary pattern. Compared to diets with no more than 14% of energy from protein, diets with more than 22% of energy from protein were associated with a 23-24% higher risk of becoming overweight or obese in normal weight and overweight subjects at baseline. CONCLUSION Our results show that participants consuming an amount of protein above the protein intake recommended by the American Diabetes Association may experience a higher risk of becoming overweight or obese during adult life.
Resumo:
De novo lipogenesis and hypercaloric diets are thought to contribute to increased fat mass, particularly in abdominal fat depots. CB1 is highly expressed in adipose tissue, and CB1-mediated signalling is associated with stimulation of lipogenesis and diet-induced obesity, though its contribution to increasing fat deposition in adipose tissue is controversial. Lipogenesis is regulated by transcription factors such as liver X receptor (LXR), sterol-response element binding protein (SREBP) and carbohydrate-responsive-element-binding protein (ChREBP). We evaluated the role of CB1 in the gene expression of these factors and their target genes in relation to lipogenesis in the perirenal adipose tissue (PrAT) of rats fed a high-carbohydrate diet (HCHD) or a high-fat diet (HFD). Both obesity models showed an up-regulated gene expression of CB1 and Lxrα in this adipose pad. The Srebf-1 and ChREBP gene expressions were down-regulated in HFD but not in HCHD. The expression of their target genes encoding for lipogenic enzymes showed a decrease in diet-induced obesity and was particularly dramatic in HFD. In HCHD, CB1 blockade by AM251 reduced the Srebf-1 and ChREBP expression and totally abrogated the remnant gene expression of their target lipogenic enzymes. The phosphorylated form of the extracellular signal-regulated kinase (ERK-p), which participates in the CB1-mediated signalling pathway, was markedly present in the PrAT of obese rats. ERK-p was drastically repressed by AM251 indicating that CB1 is actually functional in PrAT of obese animals, though its activation loses the ability to stimulate lipogenesis in PrAT of obese rats. Even so, the remnant expression levels of lipogenic transcription factors found in HCHD-fed rats are still dependent on CB1 activity. Hence, in HCHD-induced obesity, CB1 blockade may help to further potentiate the reduction of lipogenesis in PrAT by means of inducing down-regulation of the ChREBP and Srebf-1 gene expression, and consequently in the expression of lipogenic enzymes.