4 resultados para CYTOSOLIC CA2
Resumo:
NFAT (nuclear factors of activated T cells) proteins constitute a family of transcription factors involved in mediating signal transduction. The presence of NFAT isoforms has been described in all cell types of the immune system, with the exception of neutrophils. In the present work we report for the first time the expression in human neutrophils of NFAT2 mRNA and protein. We also report that specific antigens were able to promote NFAT2 protein translocation to the nucleus, an effect that was mimicked by the treatment of neutrophils with anti-immunoglobulin E (anti-IgE) or anti-Fcepsilon-receptor antibodies. Antigens, anti-IgE and anti-FcepsilonRs also increased Ca2+ release and the intracellular activity of calcineurin, which was able to interact physically with NFAT2, in parallel to eliciting an enhanced NFAT2 DNA-binding activity. In addition, specific chemical inhibitors of the NFAT pathway, such as cyclosporin A and VIVIT peptide, abolished antigen and anti-IgE-induced cyclooxygenase-2 (COX2) gene upregulation and prostaglandin (PGE(2)) release, suggesting that this process is through NFAT. Our results provide evidence that NFAT2 is constitutively expressed in human neutrophils, and after IgE-dependent activation operates as a transcription factor in the modulation of genes, such as COX2, during allergic inflammation.
Resumo:
Angiotensin II (Ang II) highly stimulates superoxide anion production by neutrophils. The G-protein Rac2 modulates the activity of NADPH oxidase in response to various stimuli. Here, we describe that Ang II induced both Rac2 translocation from the cytosol to the plasma membrane and Rac2 GTP-binding activity. Furthermore, Clostridium difficile toxin A, an inhibitor of the Rho-GTPases family Rho, Rac and Cdc42, prevented Ang II-elicited O2-/ROS production, phosphorylation of the mitogen-activated protein kinases (MAPKs) p38, extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinase 1/2, and Rac2 activation. Rac2 GTPase inhibition by C. difficile toxin A was accompanied by a robust reduction of the cytosolic Ca(2)(+) elevation induced by Ang II in human neutrophils. Furthermore, SB203580 and PD098059 act as inhibitors of p38MAPK and ERK1/2 respectively, wortmannin, an inhibitor of phosphatidylinositol-3-kinase, and cyclosporin A, a calcineurin inhibitor, hindered both translocation of Rac2 from the cytosol to the plasma membrane and enhancement of Rac2 GTP-binding elicited by Ang II. These results provide evidence that the activation of Rac2 by Ang II is exerted through multiple signalling pathways, involving Ca(2)(+)/calcineurin and protein kinases, the elucidation of which should be insightful in the design of new therapies aimed at reversing the inflammation of vessel walls found in a number of cardiovascular diseases.
Resumo:
The vasoconstrictor effect of hydrogen peroxide (H(2)O(2)) on isolated perfused rat kidney was investigated. H(2)O(2) induced vasoconstriction in the isolated rat kidney in a concentration-dependent manner. The vasoconstrictor effects of H(2)O(2) were completely inhibited by 1200 U/ml catalase. Endothelium-removal potentiated the renal response to H(2)O(2). The H(2)O(2) dose-response curve was not significantly modified by administration of the NO inhibitor L-NAME (10(-4) mol/l), whereas it was increased by the non-specific inhibitor of K+-channels, tetraethylammonium (3.10(-3) mol/l). Separately, removal of extracellular Ca(2+), administration of a mixture of calcium desensitizing agents (nitroprusside, papaverine, and diazoxide), and administration of a protein kinase C (PKC) inhibitor (chelerythrine, 10(-5) mol/l) each significantly attenuated the vasoconstrictor response to H(2)O(2), which was virtually suppressed when they were performed together. The pressor response to H(2)O(2) was not affected by: dimethyl sulfoxide (7.10(-5) mol/l) plus mannitol (3.10(-5) mol/l); intracellular Ca(2+) chelation using BAPTA (10(-5) mol/l); calcium store depletion after repeated doses of phenylephrine (10(-5) g/g kidney); or the presence of indomethacin (10(-5) mol/l), ODYA (2.10(-6) mol/l) or genistein (10(-5) mol/l). We conclude that the vasoconstrictor response to H(2)O(2) in the rat renal vasculature comprises the following components: 1) extracellular calcium influx, 2) activation of PKC, and 3) stimulation of pathways leading to sensitization of contractile elements to calcium. Moreover, a reduced pressor responsiveness to H(2)O(2) in female kidneys was observed.
Resumo:
The STAR family of proteins links signaling pathways to various aspects of post-transcriptional regulation and processing of RNAs. Sam68 belongs to this class of heteronuclear ribonucleoprotein particle K (hnRNP K) homology (KH) single domain-containing family of RNA-binding proteins that also contains some domains predicted to bind critical components in signal transduction pathways. In response to phosphorylation and other post-transcriptional modifications, Sam68 has been shown to have the ability to link signal transduction pathways to downstream effects regulating RNA metabolism, including transcription, alternative splicing or RNA transport. In addition to its function as a docking protein in some signaling pathways, this prototypic STAR protein has been identified to have a nuclear localization and to take part in the formation of both nuclear and cytosolic multi-molecular complexes such as Sam68 nuclear bodies and stress granules. Coupling with other proteins and RNA targets, Sam68 may play a role in the regulation of differential expression and mRNA processing and translation according to internal and external signals, thus mediating important physiological functions, such as cell death, proliferation or cell differentiation.