3 resultados para Bowdoin College Grant West
Resumo:
INTRODUCTION Functional imaging studies of addiction following protracted abstinence have not been systematically conducted to look at the associations between severity of use of different drugs and brain dysfunction. Findings from such studies may be relevant to implement specific interventions for treatment. The aim of this study was to examine the association between resting-state regional brain metabolism (measured with 18F-fluorodeoxyglucose Positron Emission Tomography (FDG-PET) and the severity of use of cocaine, heroin, alcohol, MDMA and cannabis in a sample of polysubstance users with prolonged abstinence from all drugs used. METHODS Our sample consisted of 49 polysubstance users enrolled in residential treatment. We conducted correlation analyses between estimates of use of cocaine, heroin, alcohol, MDMA and cannabis and brain metabolism (BM) (using Statistical Parametric Mapping voxel-based (VB) whole-brain analyses). In all correlation analyses conducted for each of the drugs we controlled for the co-abuse of the other drugs used. RESULTS The analysis showed significant negative correlations between severity of heroin, alcohol, MDMA and cannabis use and BM in the dorsolateral prefrontal cortex (DLPFC) and temporal cortex. Alcohol use was further associated with lower metabolism in frontal premotor cortex and putamen, and stimulants use with parietal cortex. CONCLUSIONS Duration of use of different drugs negatively correlated with overlapping regions in the DLPFC, whereas severity of cocaine, heroin and alcohol use selectively impact parietal, temporal, and frontal-premotor/basal ganglia regions respectively. The knowledge of these associations could be useful in the clinical practice since different brain alterations have been associated with different patterns of execution that may affect the rehabilitation of these patients.
Resumo:
BACKGROUND Observational studies implicate higher dietary energy density (DED) as a potential risk factor for weight gain and obesity. It has been hypothesized that DED may also be associated with risk of type 2 diabetes (T2D), but limited evidence exists. Therefore, we investigated the association between DED and risk of T2D in a large prospective study with heterogeneity of dietary intake. METHODOLOGY/PRINCIPAL FINDINGS A case-cohort study was nested within the European Prospective Investigation into Cancer (EPIC) study of 340,234 participants contributing 3.99 million person years of follow-up, identifying 12,403 incident diabetes cases and a random subcohort of 16,835 individuals from 8 European countries. DED was calculated as energy (kcal) from foods (except beverages) divided by the weight (gram) of foods estimated from dietary questionnaires. Prentice-weighted Cox proportional hazard regression models were fitted by country. Risk estimates were pooled by random effects meta-analysis and heterogeneity was evaluated. Estimated mean (sd) DED was 1.5 (0.3) kcal/g among cases and subcohort members, varying across countries (range 1.4-1.7 kcal/g). After adjustment for age, sex, smoking, physical activity, alcohol intake, energy intake from beverages and misreporting of dietary intake, no association was observed between DED and T2D (HR 1.02 (95% CI: 0.93-1.13), which was consistent across countries (I(2) = 2.9%). CONCLUSIONS/SIGNIFICANCE In this large European case-cohort study no association between DED of solid and semi-solid foods and risk of T2D was observed. However, despite the fact that there currently is no conclusive evidence for an association between DED and T2DM risk, choosing low energy dense foods should be promoted as they support current WHO recommendations to prevent chronic diseases.
Resumo:
BACKGROUND Understanding of the genetic basis of type 2 diabetes (T2D) has progressed rapidly, but the interactions between common genetic variants and lifestyle risk factors have not been systematically investigated in studies with adequate statistical power. Therefore, we aimed to quantify the combined effects of genetic and lifestyle factors on risk of T2D in order to inform strategies for prevention. METHODS AND FINDINGS The InterAct study includes 12,403 incident T2D cases and a representative sub-cohort of 16,154 individuals from a cohort of 340,234 European participants with 3.99 million person-years of follow-up. We studied the combined effects of an additive genetic T2D risk score and modifiable and non-modifiable risk factors using Prentice-weighted Cox regression and random effects meta-analysis methods. The effect of the genetic score was significantly greater in younger individuals (p for interaction = 1.20×10-4). Relative genetic risk (per standard deviation [4.4 risk alleles]) was also larger in participants who were leaner, both in terms of body mass index (p for interaction = 1.50×10-3) and waist circumference (p for interaction = 7.49×10-9). Examination of absolute risks by strata showed the importance of obesity for T2D risk. The 10-y cumulative incidence of T2D rose from 0.25% to 0.89% across extreme quartiles of the genetic score in normal weight individuals, compared to 4.22% to 7.99% in obese individuals. We detected no significant interactions between the genetic score and sex, diabetes family history, physical activity, or dietary habits assessed by a Mediterranean diet score. CONCLUSIONS The relative effect of a T2D genetic risk score is greater in younger and leaner participants. However, this sub-group is at low absolute risk and would not be a logical target for preventive interventions. The high absolute risk associated with obesity at any level of genetic risk highlights the importance of universal rather than targeted approaches to lifestyle intervention.