2 resultados para Bayesian Mixture Model, Cavalieri Method, Trapezoidal Rule
Resumo:
BACKGROUND Spain shows the highest bladder cancer incidence rates in men among European countries. The most important risk factors are tobacco smoking and occupational exposure to a range of different chemical substances, such as aromatic amines. METHODS This paper describes the municipal distribution of bladder cancer mortality and attempts to "adjust" this spatial pattern for the prevalence of smokers, using the autoregressive spatial model proposed by Besag, York and Molliè, with relative risk of lung cancer mortality as a surrogate. RESULTS It has been possible to compile and ascertain the posterior distribution of relative risk for bladder cancer adjusted for lung cancer mortality, on the basis of a single Bayesian spatial model covering all of Spain's 8077 towns. Maps were plotted depicting smoothed relative risk (RR) estimates, and the distribution of the posterior probability of RR>1 by sex. Towns that registered the highest relative risks for both sexes were mostly located in the Provinces of Cadiz, Seville, Huelva, Barcelona and Almería. The highest-risk area in Barcelona Province corresponded to very specific municipal areas in the Bages district, e.g., Suría, Sallent, Balsareny, Manresa and Cardona. CONCLUSION Mining/industrial pollution and the risk entailed in certain occupational exposures could in part be dictating the pattern of municipal bladder cancer mortality in Spain. Population exposure to arsenic is a matter that calls for attention. It would be of great interest if the relationship between the chemical quality of drinking water and the frequency of bladder cancer could be studied.
Resumo:
This study is part of an ongoing collaborative effort between the medical and the signal processing communities to promote research on applying standard Automatic Speech Recognition (ASR) techniques for the automatic diagnosis of patients with severe obstructive sleep apnoea (OSA). Early detection of severe apnoea cases is important so that patients can receive early treatment. Effective ASR-based detection could dramatically cut medical testing time. Working with a carefully designed speech database of healthy and apnoea subjects, we describe an acoustic search for distinctive apnoea voice characteristics. We also study abnormal nasalization in OSA patients by modelling vowels in nasal and nonnasal phonetic contexts using Gaussian Mixture Model (GMM) pattern recognition on speech spectra. Finally, we present experimental findings regarding the discriminative power of GMMs applied to severe apnoea detection. We have achieved an 81% correct classification rate, which is very promising and underpins the interest in this line of inquiry.