2 resultados para BINARY RESPONSE MODELS
Resumo:
BACKGROUND The aim of our work was to replicate, in a Southern European population, the association reported in Northern populations between PTPRC locus and response to anti-tumor necrosis factor (anti-TNF) treatment in rheumatoid arthritis (RA). We also looked at associations between five RA risk alleles and treatment response. METHODS We evaluated associations between anti-TNF treatment responses assessed by DAS28 change and by EULAR response at six months in 383 Portuguese patients. Univariate and multivariate linear and logistic regression analyses were performed. In a second step to confirm our findings, we pooled our population with 265 Spanish patients. RESULTS No association was found between PTPRC rs10919563 allele and anti-TNF treatment response, neither in Portuguese modeling for several clinical variables nor in the overall population combining Portuguese and Spanish patients. The minor allele for RA susceptibility, rs3761847 SNP in TRAF1/C5 region, was associated with a poor response in linear and logistic univariate and multivariate regression analyses. No association was observed with the other allellic variants. Results were confirmed in the pooled analysis. CONCLUSION This study did not replicate the association between PTPRC and the response to anti-TNF treatment in our Southern European population. We found that TRAF1/C5 risk RA variants potentially influence anti-TNF treatment response.
Resumo:
BACKGROUND In this study, we evaluated the ability of gene expression profiles to predict chemotherapy response and survival in triple-negative breast cancer (TNBC). METHODS Gene expression and clinical-pathological data were evaluated in five independent cohorts, including three randomised clinical trials for a total of 1055 patients with TNBC, basal-like disease (BLBC) or both. Previously defined intrinsic molecular subtype and a proliferation signature were determined and tested. Each signature was tested using multivariable logistic regression models (for pCR (pathological complete response)) and Cox models (for survival). Within TNBC, interactions between each signature and the basal-like subtype (vs other subtypes) for predicting either pCR or survival were investigated. RESULTS Within TNBC, all intrinsic subtypes were identified but BLBC predominated (55-81%). Significant associations between genomic signatures and response and survival after chemotherapy were only identified within BLBC and not within TNBC as a whole. In particular, high expression of a previously identified proliferation signature, or low expression of the luminal A signature, was found independently associated with pCR and improved survival following chemotherapy across different cohorts. Significant interaction tests were only obtained between each signature and the BLBC subtype for prediction of chemotherapy response or survival. CONCLUSIONS The proliferation signature predicts response and improved survival after chemotherapy, but only within BLBC. This highlights the clinical implications of TNBC heterogeneity, and suggests that future clinical trials focused on this phenotypic subtype should consider stratifying patients as having BLBC or not.