1 resultado para Automatic Gridding of microarray images
Filtro por publicador
- Repository Napier (1)
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (5)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (7)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (3)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archive of European Integration (3)
- Aston University Research Archive (20)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (6)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (33)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (1)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (51)
- Brock University, Canada (8)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (10)
- CentAUR: Central Archive University of Reading - UK (18)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (8)
- Cochin University of Science & Technology (CUSAT), India (6)
- Collection Of Biostatistics Research Archive (3)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (49)
- CUNY Academic Works (2)
- Dalarna University College Electronic Archive (4)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Digital Commons - Michigan Tech (2)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (4)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (4)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (22)
- Duke University (2)
- Fachlicher Dokumentenserver Paedagogik/Erziehungswissenschaften (1)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (3)
- Institutional Repository of Leibniz University Hannover (2)
- Instituto Gulbenkian de Ciência (1)
- Instituto Politécnico do Porto, Portugal (16)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (1)
- Massachusetts Institute of Technology (2)
- Memorial University Research Repository (2)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (3)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (337)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (13)
- Repositório da Produção Científica e Intelectual da Unicamp (4)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (51)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (15)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- Scielo Saúde Pública - SP (21)
- Scielo Uruguai (1)
- Universidad de Alicante (5)
- Universidad Politécnica de Madrid (49)
- Universidade Complutense de Madrid (2)
- Universidade do Minho (9)
- Universitat de Girona, Spain (4)
- Université de Lausanne, Switzerland (69)
- Université de Montréal, Canada (8)
- University of Michigan (19)
- University of Queensland eSpace - Australia (29)
- WestminsterResearch - UK (1)
Resumo:
This study is part of an ongoing collaborative effort between the medical and the signal processing communities to promote research on applying standard Automatic Speech Recognition (ASR) techniques for the automatic diagnosis of patients with severe obstructive sleep apnoea (OSA). Early detection of severe apnoea cases is important so that patients can receive early treatment. Effective ASR-based detection could dramatically cut medical testing time. Working with a carefully designed speech database of healthy and apnoea subjects, we describe an acoustic search for distinctive apnoea voice characteristics. We also study abnormal nasalization in OSA patients by modelling vowels in nasal and nonnasal phonetic contexts using Gaussian Mixture Model (GMM) pattern recognition on speech spectra. Finally, we present experimental findings regarding the discriminative power of GMMs applied to severe apnoea detection. We have achieved an 81% correct classification rate, which is very promising and underpins the interest in this line of inquiry.