4 resultados para Australian Agency for Internation Development
Resumo:
Lymphocytic choriomeningitis virus (LCMV) was detected in 2 patients with acute meningitis in southern Spain within a 3-year period. Although the prevalence of LCMV infection was low (2 [1.3%] of 159 meningitis patients), it represents 2.9% of all pathogens detected. LCMV is a noteworthy agent of neurologic illness in immunocompetent persons.
Resumo:
BACKGROUND Androgen receptor (AR) gene mutations are the most frequent cause of 46,XY disorders of sex development (DSD) and are associated with a variety of phenotypes, ranging from phenotypic women [complete androgen insensitivity syndrome (CAIS)] to milder degrees of undervirilization (partial form or PAIS) or men with only infertility (mild form or MAIS). OBJECTIVE The aim of the study was to characterize the contribution of the AR gene to the molecular cause of 46,XY DSD in a series of Spanish patients. SETTING We studied a series of 133 index patients with 46,XY DSD in whom gonads were differentiated as testes, with phenotypes including varying degrees of undervirilization, and in whom the AR gene was the first candidate for a molecular analysis. METHODS The AR gene was sequenced (exons 1 to 8 with intronic flanking regions) in all patients and in family members of 61% of AR-mutated gene patients. RESULTS AR gene mutations were found in 59 individuals (44.4% of index patients), of whom 46 (78%) were CAIS and 13 (22%) PAIS. Fifty-seven different mutations were found: 21.0% located in exon 1, 15.8% in exons 2 and 3, 57.9% in exons 4-8, and 5.3% intronic. Twenty-three mutations (40.4%) had been previously described and 34 (59.6%) were novel. CONCLUSIONS AR gene mutation is the most frequent cause of 46,XY DSD, with a clearly higher frequency in the complete phenotype. Mutations spread along the whole coding sequence, including exon 1. This series shows that 60% of mutations detected during the period 2002-2009 were novel.
Resumo:
BACKGROUND Identifying individuals at high risk of excess weight gain may help targeting prevention efforts at those at risk of various metabolic diseases associated with weight gain. Our aim was to develop a risk score to identify these individuals and validate it in an external population. METHODS We used lifestyle and nutritional data from 53°758 individuals followed for a median of 5.4 years from six centers of the European Prospective Investigation into Cancer and Nutrition (EPIC) to develop a risk score to predict substantial weight gain (SWG) for the next 5 years (derivation sample). Assuming linear weight gain, SWG was defined as gaining ≥ 10% of baseline weight during follow-up. Proportional hazards models were used to identify significant predictors of SWG separately by EPIC center. Regression coefficients of predictors were pooled using random-effects meta-analysis. Pooled coefficients were used to assign weights to each predictor. The risk score was calculated as a linear combination of the predictors. External validity of the score was evaluated in nine other centers of the EPIC study (validation sample). RESULTS Our final model included age, sex, baseline weight, level of education, baseline smoking, sports activity, alcohol use, and intake of six food groups. The model's discriminatory ability measured by the area under a receiver operating characteristic curve was 0.64 (95% CI = 0.63-0.65) in the derivation sample and 0.57 (95% CI = 0.56-0.58) in the validation sample, with variation between centers. Positive and negative predictive values for the optimal cut-off value of ≥ 200 points were 9% and 96%, respectively. CONCLUSION The present risk score confidently excluded a large proportion of individuals from being at any appreciable risk to develop SWG within the next 5 years. Future studies, however, may attempt to further refine the positive prediction of the score.
Resumo:
Gut microbiota has recently been proposed as a crucial environmental factor in the development of metabolic diseases such as obesity and type 2 diabetes, mainly due to its contribution in the modulation of several processes including host energy metabolism, gut epithelial permeability, gut peptide hormone secretion, and host inflammatory state. Since the symbiotic interaction between the gut microbiota and the host is essentially reflected in specific metabolic signatures, much expectation is placed on the application of metabolomic approaches to unveil the key mechanisms linking the gut microbiota composition and activity with disease development. The present review aims to summarize the gut microbial-host co-metabolites identified so far by targeted and untargeted metabolomic studies in humans, in association with impaired glucose homeostasis and/or obesity. An alteration of the co-metabolism of bile acids, branched fatty acids, choline, vitamins (i.e., niacin), purines, and phenolic compounds has been associated so far with the obese or diabese phenotype, in respect to healthy controls. Furthermore, anti-diabetic treatments such as metformin and sulfonylurea have been observed to modulate the gut microbiota or at least their metabolic profiles, thereby potentially affecting insulin resistance through indirect mechanisms still unknown. Despite the scarcity of the metabolomic studies currently available on the microbial-host crosstalk, the data-driven results largely confirmed findings independently obtained from in vitro and animal model studies, putting forward the mechanisms underlying the implication of a dysfunctional gut microbiota in the development of metabolic disorders.