4 resultados para Areas Naturales Protegidas
Resumo:
Background: Most mortality atlases show static maps from count data aggregated over time. This procedure has several methodological problems and serious limitations for decision making in Public Health. The evaluation of health outcomes, including mortality, should be approached from a dynamic time perspective that is specific for each gender and age group. At the moment, researches in Spain do not provide a dynamic image of the population’s mortality status from a spatio-temporal point of view. The aim of this paper is to describe the spatial distribution of mortality from all causes in small areas of Andalusia (Southern Spain) and evolution over time from 1981 to 2006. Methods: A small-area ecological study was devised using the municipality as the unit for analysis. Two spatiotemporal hierarchical Bayesian models were estimated for each age group and gender. One of these was used to estimate the specific mortality rate, together with its time trends, and the other to estimate the specific rate ratio for each municipality compared with Spain as a whole. Results: More than 97% of the municipalities showed a diminishing or flat mortality trend in all gender and age groups. In 2006, over 95% of municipalities showed male and female mortality specific rates similar or significantly lower than Spanish rates for all age groups below 65. Systematically, municipalities in Western Andalusia showed significant male and female mortality excess from 1981 to 2006 only in age groups over 65. Conclusions: The study shows a dynamic geographical distribution of mortality, with a different pattern for each year, gender and age group. This information will contribute towards a reflection on the past, present and future of mortality in Andalusia.
Resumo:
Background Intra-urban inequalities in mortality have been infrequently analysed in European contexts. The aim of the present study was to analyse patterns of cancer mortality and their relationship with socioeconomic deprivation in small areas in 11 Spanish cities. Methods It is a cross-sectional ecological design using mortality data (years 1996-2003). Units of analysis were the census tracts. A deprivation index was calculated for each census tract. In order to control the variability in estimating the risk of dying we used Bayesian models. We present the RR of the census tract with the highest deprivation vs. the census tract with the lowest deprivation. Results In the case of men, socioeconomic inequalities are observed in total cancer mortality in all cities, except in Castellon, Cordoba and Vigo, while Barcelona (RR = 1.53 95%CI 1.42-1.67), Madrid (RR = 1.57 95%CI 1.49-1.65) and Seville (RR = 1.53 95%CI 1.36-1.74) present the greatest inequalities. In general Barcelona and Madrid, present inequalities for most types of cancer. Among women for total cancer mortality, inequalities have only been found in Barcelona and Zaragoza. The excess number of cancer deaths due to socioeconomic deprivation was 16,413 for men and 1,142 for women. Conclusion This study has analysed inequalities in cancer mortality in small areas of cities in Spain, not only relating this mortality with socioeconomic deprivation, but also calculating the excess mortality which may be attributed to such deprivation. This knowledge is particularly useful to determine which geographical areas in each city need intersectorial policies in order to promote a healthy environment.
Resumo:
BACKGROUND Differences in the distribution of genotypes between individuals of the same ethnicity are an important confounder factor commonly undervalued in typical association studies conducted in radiogenomics. OBJECTIVE To evaluate the genotypic distribution of SNPs in a wide set of Spanish prostate cancer patients for determine the homogeneity of the population and to disclose potential bias. DESIGN SETTING AND PARTICIPANTS A total of 601 prostate cancer patients from Andalusia, Basque Country, Canary and Catalonia were genotyped for 10 SNPs located in 6 different genes associated to DNA repair: XRCC1 (rs25487, rs25489, rs1799782), ERCC2 (rs13181), ERCC1 (rs11615), LIG4 (rs1805388, rs1805386), ATM (rs17503908, rs1800057) and P53 (rs1042522). The SNP genotyping was made in a Biotrove OpenArray® NT Cycler. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Comparisons of genotypic and allelic frequencies among populations, as well as haplotype analyses were determined using the web-based environment SNPator. Principal component analysis was made using the SnpMatrix and XSnpMatrix classes and methods implemented as an R package. Non-supervised hierarchical cluster of SNP was made using MultiExperiment Viewer. RESULTS AND LIMITATIONS We observed that genotype distribution of 4 out 10 SNPs was statistically different among the studied populations, showing the greatest differences between Andalusia and Catalonia. These observations were confirmed in cluster analysis, principal component analysis and in the differential distribution of haplotypes among the populations. Because tumor characteristics have not been taken into account, it is possible that some polymorphisms may influence tumor characteristics in the same way that it may pose a risk factor for other disease characteristics. CONCLUSION Differences in distribution of genotypes within different populations of the same ethnicity could be an important confounding factor responsible for the lack of validation of SNPs associated with radiation-induced toxicity, especially when extensive meta-analysis with subjects from different countries are carried out.
Resumo:
Abstract Background: Preventable mortality is a good indicator of possible problems to be investigated in the primary prevention chain, making it also a useful tool with which to evaluate health policies particularly public health policies. This study describes inequalities in preventable avoidable mortality in relation to socioeconomic status in small urban areas of thirty three Spanish cities, and analyses their evolution over the course of the periods 1996–2001 and 2002–2007. Methods: We analysed census tracts and all deaths occurring in the population residing in these cities from 1996 to 2007 were taken into account. The causes included in the study were lung cancer, cirrhosis, AIDS/HIV, motor vehicle traffic accidents injuries, suicide and homicide. The census tracts were classified into three groups, according their socioeconomic level. To analyse inequalities in mortality risks between the highest and lowest socioeconomic levels and over different periods, for each city and separating by sex, Poisson regression were used. Results: Preventable avoidable mortality made a significant contribution to general mortality (around 7.5%, higher among men), having decreased over time in men (12.7 in 1996–2001 and 10.9 in 2002–2007), though not so clearly among women (3.3% in 1996–2001 and 2.9% in 2002–2007). It has been observed in men that the risks of death are higher in areas of greater deprivation, and that these excesses have not modified over time. The result in women is different and differences in mortality risks by socioeconomic level could not be established in many cities. Conclusions: Preventable mortality decreased between the 1996–2001 and 2002–2007 periods, more markedly in men than in women. There were socioeconomic inequalities in mortality in most cities analysed, associating a higher risk of death with higher levels of deprivation. Inequalities have remained over the two periods analysed. This study makes it possible to identify those areas where excess preventable mortality was associated with more deprived zones. It is in these deprived zones where actions to reduce and monitor health inequalities should be put into place. Primary healthcare may play an important role in this process. Keywords: Preventable avoidable mortality, Causes of death, Inequalities in health, Small area analysis