7 resultados para Agat-3579
Resumo:
Advances in clinical virology for detecting respiratory viruses have been focused on nucleic acids amplification techniques, which have converted in the reference method for the diagnosis of acute respiratory infections of viral aetiology. Improvements of current commercial molecular assays to reduce hands-on-time rely on two strategies, a stepwise automation (semi-automation) and the complete automation of the whole procedure. Contributions to the former strategy have been the use of automated nucleic acids extractors, multiplex PCR, real-time PCR and/or DNA arrays for detection of amplicons. Commercial fully-automated molecular systems are now available for the detection of respiratory viruses. Some of them could convert in point-of-care methods substituting antigen tests for detection of respiratory syncytial virus and influenza A and B viruses. This article describes laboratory methods for detection of respiratory viruses. A cost-effective and rational diagnostic algorithm is proposed, considering technical aspects of the available assays, infrastructure possibilities of each laboratory and clinic-epidemiologic factors of the infection.
Resumo:
The aim of this study was to determine human papillomavirus (HPV) types distribution in cervical preneoplasic lesions in a Southern Spanish population and their relationship between HPV type and grade of histopathological abnormality. Finally, 232 cervical samples from 135 women with previous cytological abnormalities were included in this study. Colposcopy studies and biopsies were performed. Haematoxylin-eosin stained slides were observed and detection of HPV DNA in cervical swabs was carried out with use of a polymerase chain reaction and microarrays technology. The relationship between the presence of HPV infection and diagnostic variables was evaluated. HPV 16 was the most common type followed by HPV 58, 51, 33 and 31. However, the two HPV types targeted in the prophylactic vaccines such as HPV type 16 and 18 were detected in only 37 (21.2%) and 2 (1.1%) cases respectively. Thirty-three (18.9%) of samples were infected with multiple types, the majority of them with two types. In addition, during the follow-up of patients many changes in type distribution were observed. Several studies will be necessary in order to evaluate the HPV type distribution for therapeutically and prophylactic purposes such as vaccine treatment. Also, because of the differences obtained depending of use of various DNA technologies, the performance of some comparative studies of the different methods from detection of HPV would be advisable in a high population of patients and with the most homogeneous conditions possible.
Resumo:
It has been estimated that more than 70% of all medical activity is directly related to information providing analytical data. Substantial technological advances have taken place recently, which have allowed a previously unimagined number of analytical samples to be processed while offering high quality results. Concurrently, yet more new diagnostic determinations have been introduced - all of which has led to a significant increase in the prescription of analytical parameters. This increased workload has placed great pressure on the laboratory with respect to health costs. The present manager of the Clinical Laboratory (CL) has had to examine cost control as well as rationing - meaning that the CL's focus has not been strictly metrological, as if it were purely a system producing results, but instead has had to concentrate on its efficiency and efficacy. By applying re-engineering criteria, an emphasis has had to be placed on improved organisation and operating practice within the CL, focussing on the current criteria of the Integrated Management Areas where the technical and human resources are brought together. This re-engineering has been based on the concepts of consolidating and integrating the analytical platforms, while differentiating the production areas (CORE Laboratory) from the information areas. With these present concepts in mind, automation and virological treatment, along with serology in general, follow the same criteria as the rest of the operating methodology in the Clinical Laboratory.
Resumo:
Nucleic acid amplification techniques are commonly used currently to diagnose viral diseases and manage patients with this kind of illnesses. These techniques have had a rapid but unconventional route of development during the last 30 years, with the discovery and introduction of several assays in clinical diagnosis. The increase in the number of commercially available methods has facilitated the use of this technology in the majority of laboratories worldwide. This technology has reduced the use of some other techniques such as viral culture based methods and serological assays in the clinical virology laboratory. Moreover, nucleic acid amplification techniques are now the methods of reference and also the most useful assays for the diagnosis in several diseases. The introduction of these techniques and their automation provides new opportunities for the clinical laboratory to affect patient care. The main objectives in performing nucleic acid tests in this field are to provide timely results useful for high-quality patient care at a reasonable cost, because rapid results are associated with improvements in patients care. The use of amplification techniques such as polymerase chain reaction, real-time polymerase chain reaction or nucleic acid sequence-based amplification for virus detection, genotyping and quantification have some advantages like high sensitivity and reproducibility, as well as a broad dynamic range. This review is an up-to-date of the main nucleic acid techniques and their clinical applications, and special challenges and opportunities that these techniques currently provide for the clinical virology laboratory.
Resumo:
Hepatitis B virus (HBV) and Hepatitis C virus (HCV) infections pose major public health problems because of their prevalence worldwide. Consequently, screening for these infections is an important part of routine laboratory activity. Serological and molecular markers are key elements in diagnosis, prognosis and treatment monitoring for HBV and HCV infections. Today, automated chemiluminescence immunoassay (CLIA) analyzers are widely used for virological diagnosis, particularly in high-volume clinical laboratories. Molecular biology techniques are routinely used to detect and quantify viral genomes as well as to analyze their sequence; in order to determine their genotype and detect resistance to antiviral drugs. Real-time PCR, which provides high sensitivity and a broad dynamic range, has gradually replaced other signal and target amplification technologies for the quantification and detection of nucleic acid. The next-generation DNA sequencing techniques are still restricted to research laboratories.The serological and molecular marker methods available for HBV and HCV are discussed in this article, along with their utility and limitations for use in Chronic Hepatitis B (CHB) diagnosis and monitoring.
Resumo:
MALDI-TOF mass spectrometry is a diagnostic tool of microbial identification and characterization based on the detection of the mass of molecules. In the majority of clinical laboratories, this technology is currently being used mainly for bacterial diagnosis, but several approaches in the field of virology have been investigated. The introduction of this technology in clinical virology will improve the diagnosis of infections produced by viruses but also the discovery of mutations and variants of these microorganisms as well as the detection of antiviral resistance. This review is focused on the main current applications of MALDI-TOF MS techniques in clinical virology showing the state of the art with respect to this exciting new technology.