3 resultados para Acid treated starch
Resumo:
BACKGROUND The prevalence of and risk factors for central nervous system recurrence in patients with acute promyelocytic leukemia are not well established and remain a controversial matter. DESIGN AND METHODS Between 1996 and 2005, 739 patients with newly diagnosed acute promyelocytic leukemia enrolled in two consecutive trials (PETHEMA LPA96 and LPA99) received induction therapy with all-trans retinoic acid and idarubicin. Consolidation therapy comprised three courses of anthracycline monochemotherapy (LPA96), with all-trans retinoic acid and reinforced doses of idarubicin in patients with an intermediate or high risk of relapse (LPA99). Central nervous system prophylaxis was not given. RESULTS Central nervous system relapse was documented in 11 patients. The 5-year cumulative incidence of central nervous system relapse was 1.7% (LPA96 3.2% and LPA99 1.2%; p=0.09). The cumulative incidence was 0%, 0.8%, and 5.5% in low-, intermediate-, and high-risk patients, respectively. Relapse risk score (p=0.0001) and the occurrence of central nervous system hemorrhage during induction (5-year cumulative incidence 18.7%, p=0.006) were independent risk factors for central nervous system relapse. CONCLUSIONS This study shows a low incidence of central nervous system relapse in patients with acute promyelocytic leukemia following therapy with all-trans retinoic acid and anthracycline without specific central nervous system prophylaxis. Central nervous system relapse was significantly associated with high white blood cell counts and prior central nervous system hemorrhage, which emerged as independent prognostic factors.
Resumo:
The intestinal anti-inflammatory effects of two probiotics isolated from breast milk, Lactobacillus reuteri and L. fermentum, were evaluated and compared in the trinitrobenzenesulfonic acid (TNBS) model of rat colitis. Colitis was induced in rats by intracolonic administration of 10 mg TNBS dissolved in 50% ethanol (0.25 ml). Either L. reuteri or L. fermentum was daily administered orally (5 x 10(8) colony-forming units suspended in 0.5 ml skimmed milk) to each group of rats (n 10) for 3 weeks, starting 2 weeks before colitis induction. Colonic damage was evaluated histologically and biochemically, and the colonic luminal contents were used for bacterial studies and for SCFA production. Both probiotics showed intestinal anti-inflammatory effects in this model of experimental colitis, as evidenced histologically and by a significant reduction of colonic myeloperoxidase activity (P<0.05). L. fermentum significantly counteracted the colonic glutathione depletion induced by the inflammatory process. In addition, both probiotics lowered colonic TNFalpha levels (P<0.01) and inducible NO synthase expression when compared with non-treated rats; however, the decrease in colonic cyclo-oxygenase-2 expression was only achieved with L.fermentum administration. Finally, the two probiotics induced the growth of Lactobacilli species in comparison with control colitic rats, but the production of SCFA in colonic contents was only increased when L. fermentum was given. In conclusion, L. fermentum can exert beneficial immunomodulatory properties in inflammatory bowel disease, being more effective than L. reuteri, a probiotic with reputed efficacy in promoting beneficial effects on human health.
Resumo:
Studies in animal models and humans suggest anti-inflammatory roles on the N acylethanolamide (NAE)-peroxisome proliferators activated receptor alpha (PPARα) system in inflammatory bowel diseases. However, the presence and function of NAE-PPARα signaling system in the ulcerative colitis (UC) of humans remain unknown as well as its response to active anti-inflammatory therapies such as 5-aminosalicylic acid (5-ASA) and glucocorticoids. Expression of PPARα receptor and PPARα ligands-biosynthetic (NAPE-PLD) and -degrading (FAAH and NAAA) enzymes were analyzed in untreated active and 5-ASA/glucocorticoids/immunomodulators-treated quiescent UC patients compared to healthy human colonic tissue by RT-PCR and immunohistochemical analyses. PPARα, NAAA, NAPE-PLD and FAAH showed differential distributions in the colonic epithelium, lamina propria, smooth muscle and enteric plexus. Gene expression analysis indicated a decrease of PPARα, PPARγ and NAAA, and an increase of FAAH and iNOS in the active colitis mucosa. Immunohistochemical expression in active colitis epithelium confirmed a PPARα decrease, but showed a sharp NAAA increase and a NAPE-PLD decrease, which were partially restored to control levels after treatment. We also characterized the immune cells of the UC mucosa infiltrate. We detected a decreased number of NAAA-positive and an increased number of FAAH-positive immune cells in active UC, which were partially restored to control levels after treatment. NAE-PPARα signaling system is impaired during active UC and 5-ASA/glucocorticoids treatment restored its normal expression. Since 5-ASA actions may work through PPARα and glucocorticoids through NAE-producing/degrading enzymes, the use of PPARα agonists or FAAH/NAAA blockers that increases endogenous PPARα ligands may yield similar therapeutics advantages.