3 resultados para ADRENAL AXIS
Resumo:
Salivary cortisol is a steroid hormone that is produced in the hypothalamic-pituitary-adrenal axis and secreted into saliva when persons are under stress. High levels of cortisol in saliva can be produced by many different factors, including obesity and certain psychological disorders. The articles selected for inclusion in this review were identified using Google Scholar and Medline, and this search obtained a total of 57 items. The validity of these studies was established according to the degree of evidence presented, by citations and by their applicability to the healthcare context in Spain. Specifically, this review takes into consideration studies of salivary cortisol and stress in children and adults, and those examining the relation between high levels of salivary cortisol and other disorders such as anxiety, attention-deficit/hyperactivity disorder, social phobia or emotional deprivation. These studies show that salivary cortisol is a clear indicator of stress in both children and adults. High levels of this hormone in saliva are associated with the following main consequences: reduced immune function, affecting healing and thus prolonging recovery time; delayed growth in children; increased blood pressure and heart rate in both children and adults.
Resumo:
BACKGROUND: The objectives of this study were to determine the risk factors for relative adrenal insufficiency in cardiopulmonary bypass patients and the impact on postoperative vasopressor requirements.
METHODS: Prospective cohort study on cardiopulmonary bypass patients who received etomidate or not during anesthetic induction. Relative adrenal insufficiency was defined as a rise in serum cortisol
Resumo:
CONTEXT Glucose-dependent insulinotropic peptide (GIP) has a central role in glucose homeostasis through its amplification of insulin secretion; however, its physiological role in adipose tissue is unclear. OBJECTIVE Our objective was to define the function of GIP in human adipose tissue in relation to obesity and insulin resistance. DESIGN GIP receptor (GIPR) expression was analyzed in human sc adipose tissue (SAT) and visceral adipose (VAT) from lean and obese subjects in 3 independent cohorts. GIPR expression was associated with anthropometric and biochemical variables. GIP responsiveness on insulin sensitivity was analyzed in human adipocyte cell lines in normoxic and hypoxic environments as well as in adipose-derived stem cells obtained from lean and obese patients. RESULTS GIPR expression was downregulated in SAT from obese patients and correlated negatively with body mass index, waist circumference, systolic blood pressure, and glucose and triglyceride levels. Furthermore, homeostasis model assessment of insulin resistance, glucose, and G protein-coupled receptor kinase 2 (GRK2) emerged as variables strongly associated with GIPR expression in SAT. Glucose uptake studies and insulin signaling in human adipocytes revealed GIP as an insulin-sensitizer incretin. Immunoprecipitation experiments suggested that GIP promotes the interaction of GRK2 with GIPR and decreases the association of GRK2 to insulin receptor substrate 1. These effects of GIP observed under normoxia were lost in human fat cells cultured in hypoxia. In support of this, GIP increased insulin sensitivity in human adipose-derived stem cells from lean patients. GIP also induced GIPR expression, which was concomitant with a downregulation of the incretin-degrading enzyme dipeptidyl peptidase 4. None of the physiological effects of GIP were detected in human fat cells obtained from an obese environment with reduced levels of GIPR. CONCLUSIONS GIP/GIPR signaling is disrupted in insulin-resistant states, such as obesity, and normalizing this function might represent a potential therapy in the treatment of obesity-associated metabolic disorders.