2 resultados para A-Ci curves


Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Increasing evidence suggests a mechanistic link between the glycemic environment and renal and cardiovascular events, even below the threshold for diabetes. We aimed to assess the association between HbA1c and chronic kidney disease (CKD) and cardiovascular disease (CVD). METHODS: A cross-sectional study involving a random representative sample of 2270 adults from southern Spain (Malaga) was undertaken. We measured HbA1c, serum creatinine and albuminuria in fasting blood and urine samples. RESULTS: Individuals without diabetes in the upper HbA1c tertile had an unfavorable cardiovascular and renal profile and shared certain clinical characteristics with the patients with diabetes. Overall, a higher HbA1c concentration was strongly associated with CKD or CVD after adjustment for traditional risk factors. The patients with known diabetes had a 2-fold higher odds of CKD or CVD. However, when both parameters were introduced in the same model, the HbA1c concentration was only significantly associated with clinical endpoints (OR: 1.4, 95% CI, 1.1-1.6, P = 0.002). An increase in HbA1c of one percentage point was associated with a 30% to 40% increase in the rate of CKD or CVD. This relationship was apparent in persons with and without known diabetes. ROC curves illustrated that a HbA1c of 37 mmol/mol (5.5%) was the optimal value in terms of sensitivity and specificity for predicting endpoints in this population. CONCLUSION: HbA1c levels were associated with a higher prevalence of CKD and CVD cross-sectionally, regardless of diabetes status. These data support the value of HbA1c as a marker of cardiovascular and renal disease in the general population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Anemia is a common condition in CKD that has been identified as a cardiovascular (CV) risk factor in end-stage renal disease, constituting a predictor of low survival. The aim of this study was to define the onset of anemia of renal origin and its association with the evolution of kidney disease and clinical outcomes in stage 3 CKD (CKD-3). METHODS: This epidemiological, prospective, multicenter, 3-year study included 439 CKD-3 patients. The origin of nephropathy and comorbidity (Charlson score: 3.2) were recorded. The clinical characteristics of patients that developed anemia according to EBPG guidelines were compared with those that did not, followed by multivariate logistic regression, Kaplan-Meier curves and ROC curves to investigate factors associated with the development of renal anemia. RESULTS: During the 36-month follow-up period, 50% reached CKD-4 or 5, and approximately 35% were diagnosed with anemia (85% of renal origin). The probability of developing renal anemia was 0.12, 0.20 and 0.25 at 1, 2 and 3 years, respectively. Patients that developed anemia were mainly men (72% anemic vs. 69% non-anemic). The mean age was 68 vs. 65.5 years and baseline proteinuria was 0.94 vs. 0.62 g/24h (anemic vs. non anemic, respectively). Baseline MDRD values were 36 vs. 40 mL/min and albumin 4.1 vs. 4.3 g/dL; reduction in MDRD was greater in those that developed anemia (6.8 vs. 1.6 mL/min/1.73 m2/3 years). These patients progressed earlier to CKD-4 or 5 (18 vs. 28 months), with a higher proportion of hospitalizations (31 vs. 16%), major CV events (16 vs. 7%), and higher mortality (10 vs. 6.6%) than those without anemia. Multivariate logistic regression indicated a significant association between baseline hemoglobin (OR=0.35; 95% CI: 0.24-0.28), glomerular filtration rate (OR=0.96; 95% CI: 0.93-0.99), female (OR=0.19; 95% CI: 0.10-0.40) and the development of renal anemia. CONCLUSIONS: Renal anemia is associated with a more rapid evolution to CKD-4, and a higher risk of CV events and hospitalization in non-dialysis-dependent CKD patients. This suggests that special attention should be paid to anemic CKD-3 patients.