3 resultados para 174-1071C
Resumo:
BACKGROUND The human pregnane X receptor (hPXR) is an orphan nuclear receptor that induces transcription of response elements present in steroid-inducible cytochrome P-450 gene promoters. This activation requires the participation of retinoid X receptors (RXRs), needed partners of hPXR to form heterodimers. We have investigated the expression of hPXR and RXRs in normal, premalignant, and malignant breast tissues, in order to determine whether their expression profile in localized infiltrative breast cancer is associated with an increased risk of recurrent disease. METHODS Breast samples from 99 patients including benign breast diseases, in situ and infiltrative carcinomas were processed for immunohistochemistry and Western-blot analysis. RESULTS Cancer cells from patients that developed recurrent disease showed a high cytoplasmic location of both hPXR isoforms. Only the infiltrative carcinomas that relapsed before 48 months showed nuclear location of hPXR isoform 2. This location was associated with the nuclear immunoexpression of RXR-alpha. CONCLUSION Breast cancer cells can express both variants 1 and 2 of hPXR. Infiltrative carcinomas that recurred showed a nuclear location of both hPXR and RXR-alpha; therefore, the overexpression and the subcellular location changes of hPXR could be considered as a potential new prognostic indicator.
Resumo:
Boletín semanal para profesionales sanitarios de la Secretaría General de Salud Pública y Participación Social de la Consejería de Salud
Resumo:
Nitric oxide (NO) plays a relevant role during cell death regulation in tumor cells. The overexpression of nitric oxide synthase type III (NOS-3) induces oxidative and nitrosative stress, p53 and cell death receptor expression and apoptosis in hepatoblastoma cells. S-nitrosylation of cell death receptor modulates apoptosis. Sorafenib is the unique recommended molecular-targeted drug for the treatment of patients with advanced hepatocellular carcinoma. The present study was addressed to elucidate the potential role of NO during Sorafenib-induced cell death in HepG2 cells. We determined the intra- and extracellular NO concentration, cell death receptor expression and their S-nitrosylation modifications, and apoptotic signaling in Sorafenib-treated HepG2 cells. The effect of NO donors on above parameters has also been determined. Sorafenib induced apoptosis in HepG2 cells. However, low concentration of the drug (10nM) increased cell death receptor expression, as well as caspase-8 and -9 activation, but without activation of downstream apoptotic markers. In contrast, Sorafenib (10µM) reduced upstream apoptotic parameters but increased caspase-3 activation and DNA fragmentation in HepG2 cells. The shift of cell death signaling pathway was associated with a reduction of S-nitrosylation of cell death receptors in Sorafenib-treated cells. The administration of NO donors increased S-nitrosylation of cell death receptors and overall induction of cell death markers in control and Sorafenib-treated cells. In conclusion, Sorafenib induced alteration of cell death receptor S-nitrosylation status which may have a relevant repercussion on cell death signaling in hepatoblastoma cells.