247 resultados para Intercellular signaling peptides and proteins
Resumo:
In contrast to some extensively examined food mutagens, for example, aflatoxins, N-nitrosamines and heterocyclic amines, some other food contaminants, in particular polycyclic aromatic hydrocarbons (PAH) and other aromatic compounds, have received less attention. Therefore, exploring the relationships between dietary habits and the levels of biomarkers related to exposure to aromatic compounds is highly relevant. We have investigated in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort the association between dietary items (food groups and nutrients) and aromatic DNA adducts and 4-aminobiphenyl-Hb adducts. Both types of adducts are biomarkers of carcinogen exposure and possibly of cancer risk, and were measured, respectively, in leucocytes and erythrocytes of 1086 (DNA adducts) and 190 (Hb adducts) non-smokers. An inverse, statistically significant, association has been found between DNA adduct levels and dietary fibre intake (P = 0·02), vitamin E (P = 0·04) and alcohol (P = 0·03) but not with other nutrients or food groups. Also, an inverse association between fibre and fruit intake, and BMI and 4-aminobiphenyl-Hb adducts (P = 0·03, 0·04, and 0·03 respectively) was observed. After multivariate regression analysis these inverse correlations remained statistically significant, except for the correlation adducts v. fruit intake. The present study suggests that fibre intake in the usual range can modify the level of DNA or Hb aromatic adducts, but such role seems to be quantitatively modest. Fibres could reduce the formation of DNA adducts in different manners, by diluting potential food mutagens and carcinogens in the gastrointestinal tract, by speeding their transit through the colon and by binding carcinogenic substances.
Resumo:
Aquaporin-1 (AQP1) is a water channel that is highly expressed in tissues with rapid O(2) transport. It has been reported that this protein contributes to gas permeation (CO(2), NO and O(2)) through the plasma membrane. We show that hypoxia increases Aqp1 mRNA and protein levels in tissues, namely mouse brain and lung, and in cultured cells, the 9L glioma cell line. Stopped-flow light-scattering experiments confirmed an increase in the water permeability of 9L cells exposed to hypoxia, supporting the view that hypoxic Aqp1 up-regulation has a functional role. To investigate the molecular mechanisms underlying this regulatory process, transcriptional regulation was studied by transient transfections of mouse endothelial cells with a 1297 bp 5' proximal Aqp1 promoter-luciferase construct. Incubation in hypoxia produced a dose- and time-dependent induction of luciferase activity that was also obtained after treatments with hypoxia mimetics (DMOG and CoCl(2)) and by overexpressing stabilized mutated forms of HIF-1α. Single mutations or full deletions of the three putative HIF binding domains present in the Aqp1 promoter partially reduced its responsiveness to hypoxia, and transfection with Hif-1α siRNA decreased the in vitro hypoxia induction of Aqp1 mRNA and protein levels. Our results indicate that HIF-1α participates in the hypoxic induction of AQP1. However, we also demonstrate that the activation of Aqp1 promoter by hypoxia is complex and multifactorial and suggest that besides HIF-1α other transcription factors might contribute to this regulatory process. These data provide a conceptual framework to support future research on the involvement of AQP1 in a range of pathophysiological conditions, including edema, tumor growth, and respiratory diseases.
Resumo:
BACKGROUND: The objectives of this study were to determine the risk factors for relative adrenal insufficiency in cardiopulmonary bypass patients and the impact on postoperative vasopressor requirements.
METHODS: Prospective cohort study on cardiopulmonary bypass patients who received etomidate or not during anesthetic induction. Relative adrenal insufficiency was defined as a rise in serum cortisol
Resumo:
Background: Old age is associated with an involuntary and progressive but physiological loss of muscle mass. The aim of this study was to evaluate the effects of exclusive consumption for 6 months of a protein-enriched enteral diet with a relatively high content of branched-chain amino acids on albuminemia, cortisolemia, plasma aminoacids, insulin resistance, and inflammation biomarkers in elderly patients. Methods: Thirty-two patients from the Clinical Nutrition Outpatient Unit at our hospital exclusively consumed a protein-enriched enteral diet for 6 months. Data were collected at baseline and at 3 and 6 months on anthropometric and biochemical parameters and on plasma concentrations of amino acids, cortisol,adrenocorticotropic hormone, urea, creatinine, insulin resistance, and inflammation biomarkers. Results: The percentage of patients with albumin concentration below normal cut-off values decreased from 18% to 0% by the end of the study. At 6 months, concentrations of total plasma (p = 0.008) and essential amino acids(p = 0.011), especially branched-chain amino acids (p = 0.031), were higher versus baseline values, whereas 3-methylhistidine (p = 0.001), cortisol (p = 0.001) and adrenocorticotropic hormone (p = 0.004) levels were lower. Conclusions: Regular intake of specific protein-enriched enteral formula increases plasma essential amino acids, especially branched-chain amino acids, and decreases cortisol and 3-methylhistidine, while plasma urea and creatinine remain unchanged.
Resumo:
BACKGROUND Protein-bound polysaccharide (PSK) is derived from the CM-101 strain of the fungus Coriolus versicolor and has shown anticancer activity in vitro and in in vivo experimental models and human cancers. Several randomized clinical trials have demonstrated that PSK has great potential in adjuvant cancer therapy, with positive results in the adjuvant treatment of gastric, esophageal, colorectal, breast and lung cancers. These studies have suggested the efficacy of PSK as an immunomodulator of biological responses. The precise molecular mechanisms responsible for its biological activity have yet to be fully elucidated. METHODS The in vitro cytotoxic anti-tumour activity of PSK has been evaluated in various tumour cell lines derived from leukaemias, melanomas, fibrosarcomas and cervix, lung, pancreas and gastric cancers. Tumour cell proliferation in vitro was measured by BrdU incorporation and viable cell count. Effect of PSK on human peripheral blood lymphocyte (PBL) proliferation in vitro was also analyzed. Studies of cell cycle and apoptosis were performed in PSK-treated cells. RESULTS PSK showed in vitro inhibition of tumour cell proliferation as measured by BrdU incorporation and viable cell count. The inhibition ranged from 22 to 84%. Inhibition mechanisms were identified as cell cycle arrest, with cell accumulation in G0/G1 phase and increase in apoptosis and caspase-3 expression. These results indicate that PSK has a direct cytotoxic activity in vitro, inhibiting tumour cell proliferation. In contrast, PSK shows a synergistic effect with IL-2 that increases PBL proliferation. CONCLUSION These results indicate that PSK has cytotoxic activity in vitro on tumour cell lines. This new cytotoxic activity of PSK on tumour cells is independent of its previously described immunomodulatory activity on NK cells.
Resumo:
Reconstruction of large oral mucosa defects is often challenging, since the shortage of healthy oral mucosa to replace the excised tissues is very common. In this context, tissue engineering techniques may provide a source of autologous tissues available for transplant in these patients. In this work, we developed a new model of artificial oral mucosa generated by tissue engineering using a fibrin-agarose scaffold. For that purpose, we generated primary cultures of human oral mucosa fibroblasts and keratinocytes from small biopsies of normal oral mucosa using enzymatic treatments. Then we determined the viability of the cultured cells by electron probe quantitative X-ray microanalysis, and we demonstrated that most of the cells in the primary cultures were alive and had high K/Na ratios. Once cell viability was determined, we used the cultured fibroblasts and keratinocytes to develop an artificial oral mucosa construct by using a fibrin-agarose extracellular matrix and a sequential culture technique using porous culture inserts. Histological analysis of the artificial tissues showed high similarities with normal oral mucosa controls. The epithelium of the oral substitutes had several layers, with desmosomes and apical microvilli and microplicae. Both the controls and the oral mucosa substitutes showed high suprabasal expression of cytokeratin 13 and low expression of cytokeratin 10. All these results suggest that our model of oral mucosa using fibrin-agarose scaffolds show several similarities with native human oral mucosa.
Resumo:
Trastuzumab and gemcitabine are two active drugs for meta-static breast cancer (MBC) treatment. We conducted a retrospective study of this combination in patients with Her2+ MBC in our hospital.
Resumo:
A new oligochromatographic assay, Speed-Oligo Novel Influenza A H1N1, was designed and optimized for the specific detection of the 2009 influenza A H1N1 virus. The assay is based on a PCR method coupled to detection of PCR products by means of a dipstick device. The target sequence is a 103-bp fragment within the hemagglutinin gene. The analytical sensitivity of the new assay was measured with serial dilutions of a plasmid that contained the target sequence, and we determined that down to one copy per reaction of the plasmid was reliably detected. Diagnostic performance was assessed with 103 RNAs from suspected cases (40 positive and 63 negative results) previously analyzed with a reference real-time PCR technique. All positive cases were confirmed, and no false-positive results were detected with the new assay. No cross-reactions were observed when other viral strains or clinical samples with other respiratory viruses were tested. According to these results, this new assay has 100% sensitivity and specificity. The turnaround time for the whole procedure was 140 min. The assay may be especially useful for the specific detection of 2009 H1N1 virus in laboratories not equipped with real-time PCR instruments
Resumo:
Leptin, the 16,000 molecular weight protein product of the obese gene, was originally considered as an adipocyte-derived signaling molecule for the central control of metabolism. However, leptin has been suggested to be involved in other functions during pregnancy, particularly in placenta, in which it was found to be expressed. In the present work, we have found that recombinant human chorionic gonadotropin (hCG) added to BeWo choriocarcinoma cell line showed a stimulatory effect on endogenous leptin expression, when analyzed by Western blot. This effect was time and dose dependent. Maximal effect was achieved at hCG 100 IU/ml. Moreover, hCG treatment enhanced leptin promoter activity up to 12.9 times, evaluated by transient transfection with a plasmid construction containing different promoter regions and the reporter gene luciferase. This effect was dose dependent and evidenced with all the promoter regions analyzed, regardless of length. Similar results were obtained with placental explants, thus indicating physiological relevance. Because hCG signal transduction usually involves cAMP signaling, this pathway was analyzed. Contrarily, we found that dibutyryl cAMP counteracted hCG effect on leptin expression. Furthermore, cotransfection with the catalytic subunit of PKA and/or the transcription factor cAMP response element binding protein repressed leptin expression. Thereafter we determined that hCG effect could be partially blocked by pharmacologic inhibition of MAPK pathway with 50 microM PD98059 but not by the inhibition of the phosphatidylinositol 3-kinase pathway with 0.1 microm wortmannin. Moreover, hCG treatment promoted MAPK kinase and ERK1/ERK2 phosphorylation in placental cells. Finally, cotransfection with a dominant-negative mutant of MAPK blocked the hCG-mediated activation of leptin expression. In conclusion, we provide some evidence suggesting that hCG induces leptin expression in trophoblastic cells probably involving the MAPK signal transduction pathway.
Resumo:
Glucose control is the cornerstone of Diabetes Mellitus (DM) treatment. Although self-regulation using capillary glycemia (SRCG) still remains the best procedure in clinical practice, continuous glucose monitoring systems (CGM) offer the possibility of continuous and dynamic assessment of interstitial glucose concentration. CGM systems have the potential to improve glycemic control while decreasing the incidence of hypoglycemia but the efficiency, compared with SRCG, is still debated. CGM systems have the greatest potential value in patients with hypoglycemic unawareness and in controlling daily fluctuations in blood glucose. The implementation of continuous monitoring in the standard clinical setting has not yet been established but a new generation of open and close loop subcutaneous insulin infusion devices are emerging making insulin treatment and glycemic control more reliable.
Resumo:
As a response to metabolic stress, obese critically-ill patients have the same risk of nutritional deficiency as the non-obese and can develop protein-energy malnutrition with accelerated loss of muscle mass. The primary aim of nutritional support in these patients should be to minimize loss of lean mass and accurately evaluate energy expenditure. However, routinely used formulae can overestimate calorie requirements if the patient's actual weight is used. Consequently, the use of adjusted or ideal weight is recommended with these formulae, although indirect calorimetry is the method of choice. Controversy surrounds the question of whether a strict nutritional support criterion, adjusted to the patient's requirements, should be applied or whether a certain degree of hyponutrition should be allowed. Current evidence suggested that hypocaloric nutrition can improve results, partly due to a lower rate of infectious complications and better control of hyperglycemia. Therefore, hypocaloric and hyperproteic nutrition, whether enteral or parenteral, should be standard practice in the nutritional support of critically-ill obese patients when not contraindicated. Widely accepted recommendations consist of no more than 60-70% of requirements or administration of 11-14 kcal/kg current body weight/day or 22-25 kcal/kg ideal weight/day, with 2-2.5 g/kg ideal weight/day of proteins. In a broad sense, hypocaloric-hyperprotein regimens can be considered specific to obese critically-ill patients, although the complications related to comorbidities in these patients may require other therapeutic possibilities to be considered, with specific nutrients for hyperglycemia, acute respiratory distress syndrome (ARDS) and sepsis. However, there are no prospective randomized trials with this type of nutrition in this specific population subgroup and the available data are drawn from the general population of critically-ill patients. Consequently, caution should be exercised when interpreting these data.
Resumo:
ATM and PARP-1 are two of the most important players in the cell's response to DNA damage. PARP-1 and ATM recognize and bound to both single and double strand DNA breaks in response to different triggers. Here we report that ATM and PARP-1 form a molecular complex in vivo in undamaged cells and this association increases after gamma-irradiation. ATM is also modified by PARP-1 during DNA damage. We have also evaluated the impact of PARP-1 absence or inhibition on ATM-kinase activity and have found that while PARP-1 deficient cells display a defective ATM-kinase activity and reduced gamma-H2AX foci formation in response to gamma-irradiation, PARP inhibition on itself is able to activate ATM-kinase. PARP inhibition induced gamma H2AX foci accumulation, in an ATM-dependent manner. Inhibition of PARP also induces DNA double strand breaks which were dependent on the presence of ATM. As consequence ATM deficient cells display an increased sensitivity to PARP inhibition. In summary our results show that while PARP-1 is needed in the response of ATM to gamma irradiation, the inhibition of PARP induces DNA double strand breaks (which are resolved in and ATM-dependent pathway) and activates ATM kinase.
Resumo:
High postprandial levels of TAG may further induce endothelial dysfunction and inflammation in subjects with high fasting levels of TAG, an effect that seems to be related to oxidative stress. The present study investigated whether minor compounds of olive oil with antioxidant activity decrease postprandial levels of soluble isoforms of intercellular adhesion molecule 1 (sICAM-1) and vascular cell adhesion molecule 1 (sVCAM-1), as surrogate markers of vascular inflammation, after a high-fat meal. A randomized crossover and blind trial on fourteen healthy and fourteen hypertriacylglycerolaemic subjects was performed. The study involved a 1-week adaptation lead-in period on a National Cholesterol Education Program Step I diet supplemented with extra-virgin olive oil (EVOO) containing 1125 mg polyphenols/kg and 350 mg tocopherols/kg, or refined olive oil (ROO) with no polyphenols or tocopherols. After a 12 h fast, the participants ate a high-fat meal enriched in EVOO or ROO (50 g/m2 body surface area), which on average provided 3700 kJ energy with a macronutrient profile of 72% fat, 22% carbohydrate and 6% protein. Blood samples drawn hourly over the following 8 h demonstrated a similar postprandial TAG response for both EVOO and ROO meals. However, in both healthy and hypertriacylglycerolaemic subjects the net incremental area under the curve for sICAM-1 and sVCAM-1 were significantly lower after the EVOO meal. In conclusion,the consumption of EVOO with a high content of minor antioxidant compounds may have postprandial anti-inflammatory protective effects.
Resumo:
Nutritional support in acute renal failure must take into account the patient's catabolism and the treatment of the renal failure. Hypermetabolic failure is common in these patients, requiring continuous renal replacement therapy or daily hemodialysis. In patients with normal catabolism (urea nitrogen below 10 g/day) and preserved diuresis, conservative treatment can be attempted. In these patients, relatively hypoproteic nutritional support is essential, using proteins with high biological value and limiting fluid and electrolyte intake according to the patient's individual requirements. Micronutrient intake should be adjusted, the only buffering agent used being bicarbonate. Limitations on fluid, electrolyte and nitrogen intake no longer apply when extrarenal clearance techniques are used but intake of these substances should be modified according to the type of clearance. Depending on their hemofiltration flow, continuous renal replacement systems require high daily nitrogen intake, which can sometimes reach 2.5 g protein/kg. The amount of volume replacement can induce energy overload and therefore the use of glucose-free replacement fluids and glucose-free dialysis or a glucose concentration of 1 g/L, with bicarbonate as a buffer, is recommended. Monitoring of electrolyte levels (especially those of phosphorus, potassium and magnesium) and of micronutrients is essential and administration of these substances should be individually-tailored.
Resumo:
Nutritional metabolic management, together with other treatment and support measures used, is one of the mainstays of the treatment of septic patients. Nutritional support should be started early, after initial life support measures, to avoid the consequences of malnutrition, to provide adequate nutritional intake and to prevent the development of secondary complications such as superinfection or multiorgan failure. As in other critically-ill patients, when the enteral route cannot be used to ensure calorie-protein requirements, the association of parenteral nutrition has been shown to be safe in this subgroup of patients. Studies evaluating the effect of specific pharmaconutrients in septic patients are scarce and are insufficient to allow recommendations to be made. To date, enteral diets with a mixture of substrates with distinct pharmaconutrient properties do not seem to be superior to standard diets in altering the course of sepsis, although equally there is no evidence that these diets are harmful. There is insufficient evidence to recommend the use of glutamine in septic patients receiving parenteral nutrition. However, given the good results and absence of glutamine-related adverse effects in the various studies performed in the general population of critically-ill patients, these patients could benefit from the use of this substance. Routine use of omega-3 fatty acids cannot be recommended until further evidence has been gathered, although the use of lipid emulsions with a high omega-6 fatty acid content should be avoided. Septic patients should receive an adequate supply of essential trace elements and vitamins. Further studies are required before the use of high-dose selenium can be recommended.