987 resultados para Medical Subject Headings::Organisms::Viruses::DNA Viruses::Papillomaviridae
Resumo:
OBJECTIVE Zinc-α(2) glycoprotein (ZAG) stimulates lipid loss by adipocytes and may be involved in the regulation of adipose tissue metabolism. However, to date no studies have been made in the most extreme of obesity. The aims of this study are to analyze ZAG expression levels in adipose tissue from morbidly obese patients, and their relationship with lipogenic and lipolytic genes and with insulin resistance (IR). METHODS mRNA expression levels of PPARγ, IRS-1, IRS-2, lipogenic and lipolytic genes and ZAG were quantified in visceral (VAT) and subcutaneous adipose tissue (SAT) of 25 nondiabetic morbidly obese patients, 11 with low IR and 14 with high IR. Plasma ZAG was also analyzed. RESULTS The morbidly obese patients with low IR had a higher VAT ZAG expression as compared with the patients with high IR (p = 0.023). In the patients with low IR, the VAT ZAG expression was greater than that in SAT (p = 0.009). ZAG expression correlated between SAT and VAT (r = 0.709, p<0.001). VAT ZAG expression was mainly predicted by insulin, HOMA-IR, plasma adiponectin and expression of adiponectin and ACSS2. SAT ZAG expression was only predicted by expression of ATGL. CONCLUSIONS ZAG could be involved in modulating lipid metabolism in adipose tissue and is associated with insulin resistance. These findings suggest that ZAG may be a useful target in obesity and related disorders, such as diabetes.
Resumo:
BACKGROUND AND OBJECTIVES Cancer testis antigens (CTA) provide attractive targets for cancer-specific immunotherapy. Although CTA genes are expressed in some normal tissues, such as the testis, this immunologically protected site lacks MHC I expression and as such, does not present self antigens to T cells. To date, CTA genes have been shown to be expressed in a range of solid tumors via demethylation of their promoter CpG islands, but rarely in chronic myeloid leukemia (CML) or other hematologic malignancies. DESIGN AND METHODS In this study, the methylation status of the HAGE CTA gene promoter was analyzed by quantitative methylation-specific polymerase chain reaction (MSP) and sequencing in four Philadelphia-positive cell lines (TCC-S, K562, KU812 and KYO-1) and in CML samples taken from patients in chronic phase (CP n=215) or blast crisis (BC n=47). HAGE expression was assessed by quantitative reverse transcriptase-polymerase chain reaction. RESULTS The TCC-S cell line showed demethylation of HAGE that was associated with over-expression of this gene. HAGE hypomethylation was significantly more frequent in BC (46%) than in CP (22%) (p=0.01) and was correlated with high expression levels of HAGE transcripts (p<0.0001). Of note, in CP-CML, extensive HAGE hypomethylation was associated with poorer prognosis in terms of cytogenetic response to interferon (p=0.01) or imatinib (p=0.01), molecular response to imatinib (p=0.003) and progression-free survival (p=0.05). INTERPRETATIONS AND CONCLUSION: The methylation status of the HAGE promoter directly correlates with its expression in both CML cell lines and patients and is associated with advanced disease and poor outcome.
Resumo:
NFAT (nuclear factors of activated T cells) proteins constitute a family of transcription factors involved in mediating signal transduction. The presence of NFAT isoforms has been described in all cell types of the immune system, with the exception of neutrophils. In the present work we report for the first time the expression in human neutrophils of NFAT2 mRNA and protein. We also report that specific antigens were able to promote NFAT2 protein translocation to the nucleus, an effect that was mimicked by the treatment of neutrophils with anti-immunoglobulin E (anti-IgE) or anti-Fcepsilon-receptor antibodies. Antigens, anti-IgE and anti-FcepsilonRs also increased Ca2+ release and the intracellular activity of calcineurin, which was able to interact physically with NFAT2, in parallel to eliciting an enhanced NFAT2 DNA-binding activity. In addition, specific chemical inhibitors of the NFAT pathway, such as cyclosporin A and VIVIT peptide, abolished antigen and anti-IgE-induced cyclooxygenase-2 (COX2) gene upregulation and prostaglandin (PGE(2)) release, suggesting that this process is through NFAT. Our results provide evidence that NFAT2 is constitutively expressed in human neutrophils, and after IgE-dependent activation operates as a transcription factor in the modulation of genes, such as COX2, during allergic inflammation.
Resumo:
BACKGROUND Hereditary Spastic Paraplegias (HSP) are characterized by progressive spasticity and weakness of the lower limbs. At least 45 loci have been identified in families with autosomal dominant (AD), autosomal recessive (AR), or X-linked hereditary patterns. Mutations in the SPAST (SPG4) and ATL1 (SPG3A) genes would account for about 50% of the ADHSP cases. METHODS We defined the SPAST and ATL1 mutational spectrum in a total of 370 unrelated HSP index cases from Spain (83% with a pure phenotype). RESULTS We found 50 SPAST mutations (including two large deletions) in 54 patients and 7 ATL1 mutations in 11 patients. A total of 33 of the SPAST and 3 of the ATL1 were new mutations. A total of 141 (31%) were familial cases, and we found a higher frequency of mutation carriers among these compared to apparently sporadic cases (38% vs. 5%). Five of the SPAST mutations were predicted to affect the pre-mRNA splicing, and in 4 of them we demonstrated this effect at the cDNA level. In addition to large deletions, splicing, frameshifting, and missense mutations, we also found a nucleotide change in the stop codon that would result in a larger ORF. CONCLUSIONS In a large cohort of Spanish patients with spastic paraplegia, SPAST and ATL1 mutations were found in 15% of the cases. These mutations were more frequent in familial cases (compared to sporadic), and were associated with heterogeneous clinical manifestations.
Resumo:
There is strong evidence suggesting the presence of a genetic component in the aetiology of multiple myeloma (MM). However no genetic risk factors have been unequivocally established so far. To further our understanding of the genetic determinants of MM risk, a promising strategy is to collect a large set of patients in a consortium, as successfully done for other cancers. In this article, we review the main findings in the genetic susceptibility and pharmacogenetics of MM and present the strategy of the IMMEnSE (International Multiple Myeloma rESEarch) consortium in contributing to determine the role of genetic variation in pharmacogenetics and in MM risk.
Resumo:
Nutrition is the basis of human physiological processes. Inadequate nutrition can lead to dysfunction in the metabolic chain links. One of the most important micronutrients is zinc, as evidenced by its wide range of carriers in the body. Zinc intake has a large margin in the current world population, may be 7 mg/d in the UK, reaching 15 mg/d in the U.S., although of course, the RDA's are set according to age, sex , physiological status (pregnancy, lactation, etc..), or disease. It is known that zinc is essential for the structure and function as well as DNA and enzymes, coenzymes, hormones and so on. Life is short, zinc, since the most rapidly absorbed and is transferred to tanks where it is stored, so the amount available zinc in the blood cannot be the amount "real". In this work we have done a mini-review of the passage of zinc by the body trying since their intake to their tour of the blood in both healthy and sick people.
Resumo:
INTRODUCTION We functionally analyzed a frameshift mutation in the SCN5A gene encoding cardiac Na(+) channels (Nav1.5) found in a proband with repeated episodes of ventricular fibrillation who presented bradycardia and paroxysmal atrial fibrillation. Seven relatives also carry the mutation and showed a Brugada syndrome with an incomplete and variable expression. The mutation (p.D1816VfsX7) resulted in a severe truncation (201 residues) of the Nav1.5 C-terminus. METHODS AND RESULTS Wild-type (WT) and mutated Nav1.5 channels together with hNavβ1 were expressed in CHO cells and currents were recorded at room temperature using the whole-cell patch-clamp. Expression of p.D1816VfsX7 alone resulted in a marked reduction (≈90%) in peak Na(+) current density compared with WT channels. Peak current density generated by p.D1816VfsX7+WT was ≈50% of that generated by WT channels. p.D1816VfsX7 positively shifted activation and inactivation curves, leading to a significant reduction of the window current. The mutation accelerated current activation and reactivation kinetics and increased the fraction of channels developing slow inactivation with prolonged depolarizations. However, late INa was not modified by the mutation. p.D1816VfsX7 produced a marked reduction of channel trafficking toward the membrane that was not restored by decreasing incubation temperature during cell culture or by incubation with 300 μM mexiletine and 5 mM 4-phenylbutirate. CONCLUSION Despite a severe truncation of the C-terminus, the resulting mutated channels generate currents, albeit with reduced amplitude and altered biophysical properties, confirming the key role of the C-terminal domain in the expression and function of the cardiac Na(+) channel.
Resumo:
BACKGROUND We evaluated a newly designed electronic portfolio (e-Portfolio) that provided quantitative evaluation of surgical skills. Medical students at the University of Seville used the e-Portfolio on a voluntary basis for evaluation of their performance in undergraduate surgical subjects. METHODS Our new web-based e-Portfolio was designed to evaluate surgical practical knowledge and skills targets. Students recorded each activity on a form, attached evidence, and added their reflections. Students self-assessed their practical knowledge using qualitative criteria (yes/no), and graded their skills according to complexity (basic/advanced) and participation (observer/assistant/independent). A numerical value was assigned to each activity, and the values of all activities were summated to obtain the total score. The application automatically displayed quantitative feedback. We performed qualitative evaluation of the perceived usefulness of the e-Portfolio and quantitative evaluation of the targets achieved. RESULTS Thirty-seven of 112 students (33%) used the e-Portfolio, of which 87% reported that they understood the methodology of the portfolio. All students reported an improved understanding of their learning objectives resulting from the numerical visualization of progress, all students reported that the quantitative feedback encouraged their learning, and 79% of students felt that their teachers were more available because they were using the e-Portfolio. Only 51.3% of students reported that the reflective aspects of learning were useful. Individual students achieved a maximum of 65% of the total targets and 87% of the skills targets. The mean total score was 345 ± 38 points. For basic skills, 92% of students achieved the maximum score for participation as an independent operator, and all achieved the maximum scores for participation as an observer and assistant. For complex skills, 62% of students achieved the maximum score for participation as an independent operator, and 98% achieved the maximum scores for participation as an observer or assistant. CONCLUSIONS Medical students reported that use of an electronic portfolio that provided quantitative feedback on their progress was useful when the number and complexity of targets were appropriate, but not when the portfolio offered only formative evaluations based on reflection. Students felt that use of the e-Portfolio guided their learning process by indicating knowledge gaps to themselves and teachers.
Resumo:
Familial hypomagnesemia with hypercalciuria and nephrocalcinosis is an autosomal recessive tubular disorder characterized by excessive renal magnesium and calcium excretion and chronic kidney failure. This rare disease is caused by mutations in the CLDN16 and CLDN19 genes. These genes encode the tight junction proteins claudin-16 and claudin-19, respectively, which regulate the paracellular ion reabsorption in the kidney. Patients with mutations in the CLDN19 gene also present severe visual impairment. Our goals in this study were to examine the clinical characteristics of a large cohort of Spanish patients with this disorder and to identify the disease causing mutations. We included a total of 31 patients belonging to 27 unrelated families and studied renal and ocular manifestations. We then analyzed by direct DNA sequencing the coding regions of CLDN16 and CLDN19 genes in these patients. Bioinformatic tools were used to predict the consequences of mutations. Clinical evaluation showed ocular defects in 87% of patients, including mainly myopia, nystagmus and macular colobomata. Twenty two percent of patients underwent renal transplantation and impaired renal function was observed in another 61% of patients. Results of the genetic analysis revealed CLDN19 mutations in all patients confirming the clinical diagnosis. The majority of patients exhibited the previously described p.G20D mutation. Haplotype analysis using three microsatellite markers showed a founder effect for this recurrent mutation in our cohort. We also identified four new pathogenic mutations in CLDN19, p.G122R, p.I41T, p.G75C and p.G75S. A strategy based on microsequencing was designed to facilitate the genetic diagnosis of this disease. Our data indicate that patients with CLDN19 mutations have a high risk of progression to chronic renal disease.
Resumo:
Dilatation of the ascending aorta (AAD) is a prevalent aortopathy that occurs frequently associated with bicuspid aortic valve (BAV), the most common human congenital cardiac malformation. The molecular mechanisms leading to AAD associated with BAV are still poorly understood. The search for differentially expressed genes in diseased tissue by quantitative real-time PCR (qPCR) is an invaluable tool to fill this gap. However, studies dedicated to identify reference genes necessary for normalization of mRNA expression in aortic tissue are scarce. In this report, we evaluate the qPCR expression of six candidate reference genes in tissue from the ascending aorta of 52 patients with a variety of clinical and demographic characteristics, normal and dilated aortas, and different morphologies of the aortic valve (normal aorta and normal valve n = 30; dilated aorta and normal valve n = 10; normal aorta and BAV n = 4; dilated aorta and BAV n = 8). The expression stability of the candidate reference genes was determined with three statistical algorithms, GeNorm, NormFinder and Bestkeeper. The expression analyses showed that the most stable genes for the three algorithms employed were CDKN1β, POLR2A and CASC3, independently of the structure of the aorta and the valve morphology. In conclusion, we propose the use of these three genes as reference genes for mRNA expression analysis in human ascending aorta. However, we suggest searching for specific reference genes when conducting qPCR experiments with new cohort of samples.
Resumo:
BACKGROUND New biomarkers are needed for the prognosis of advanced colorectal cancer, which remains incurable by conventional treatments. O6-methylguanine DNA methyltransferase (MGMT) methylation and protein expression have been related to colorectal cancer treatment failure and tumor progression. Moreover, the presence in these tumors of cancer stem cells, which are characterized by CD133 expression, has been associated with chemoresistance, radioresistance, metastasis, and local recurrence. The objective of this study was to determine the prognostic value of CD133 and MGMT and their possible interaction in colorectal cancer patients. METHODS MGMT and CD133 expression was analyzed by immunohistochemistry in 123 paraffin-embedded colorectal adenocarcinoma samples, obtaining the percentage staining and intensity. MGMT promoter methylation status was obtained by using bisulfite modification and methylation-specific PCR (MSP). These values were correlated with clinical data, including overall survival (OS), disease-free survival (DFS), tumor stage, and differentiation grade. RESULTS Low MGMT expression intensity was significantly correlated with shorter OS and was a prognostic factor independently of treatment and histopathological variables. High percentage of CD133 expression was significantly correlated with shorter DFS but was not an independent factor. Patients with low-intensity MGMT expression and ≥50% CD133 expression had the poorest DFS and OS outcomes. CONCLUSIONS Our results support the hypothesis that MGMT expression may be an OS biomarker as useful as tumor stage or differentiation grade and that CD133 expression may be a predictive biomarker of DFS. Thus, MGMT and CD133 may both be useful for determining the prognosis of colorectal cancer patients and to identify those requiring more aggressive adjuvant therapies. Future studies will be necessary to determine its clinical utility.
Resumo:
The optimum treatment for prosthetic joint infections has not been clearly defined. We report our experience of the management of acute haematogenous prosthetic joint infection (AHPJI) in patients during a 3-year prospective study in nine Spanish hospitals. Fifty patients, of whom 30 (60%) were female, with a median age of 76 years, were diagnosed with AHPJI. The median infection-free period following joint replacement was 4.9 years. Symptoms were acute in all cases. A distant previous infection and/or bacteraemia were identified in 48%. The aetiology was as follows: Staphylococcus aureus, 19; Streptococcus spp., 14; Gram-negative bacilli, 12; anaerobes, two; and mixed infections, three. Thirty-four (68%) patients were treated with a conservative surgical approach (CSA) with implant retention, and 16 had prosthesis removal. At 2-year follow-up, 24 (48%) were cured, seven (14%) had relapsed, seven (14%) had died, five (10%) had persistent infection, five had re-infection, and two had an unknown evolution. Overall, the treatment failure rates were 57.8% in staphylococcal infections and 14.3% in streptococcal infections. There were no failures in patients with Gram-negative bacillary. By multivariate analysis, CSA was the only factor independently associated with treatment failure (OR 11.6; 95% CI 1.29-104.8). We were unable to identify any factors predicting treatment failure in CSA patients, although a Gram-negative bacillary aetiology was a protective factor. These data suggest that although conservative surgery was the only factor independently associated with treatment failure, it could be the first therapeutic choice for the management of Gram-negative bacillary and streptococcal AHPJI, and for some cases with acute S. aureus infections.
Resumo:
OBJECTIVE To study the molecular genetic and clinical features of cerebral cavernous malformations (CCM) in a cohort of Spanish patients. METHODS We analyzed the CCM1, CCM2, and CCM3 genes by MLPA and direct sequencing of exons and intronic boundaries in 94 familial forms and 41 sporadic cases of CCM patients of Spanish extraction. When available, RNA studies were performed seeking for alternative or cryptic splicing. RESULTS A total of 26 pathogenic mutations, 22 of which predict truncated proteins, were identified in 29 familial forms and in three sporadic cases. The repertoire includes six novel non-sense and frameshift mutations in CCM1 and CCM3. We also found four missense mutations, one of them located at the third NPXY motif of CCM1 and another one that leads to cryptic splicing of CCM1 exon 6. We found four genomic deletions with the loss of the whole CCM2 gene in one patient and a partial loss of CCM1and CCM2 genes in three other patients. Four families had mutations in CCM3. The results include a high frequency of intronic variants, although most of them localize out of consensus splicing sequences. The main symptoms associated to clinical debut consisted of cerebral haemorrhage, migraines and epileptic seizures. The rare co-occurrence of CCM with Noonan and Chiari syndromes and delayed menarche is reported. CONCLUSIONS Analysis of CCM genes by sequencing and MLPA has detected mutations in almost 35% of a Spanish cohort (36% of familial cases and 10% of sporadic patients). The results include 13 new mutations of CCM genes and the main clinical symptoms that deserves consideration in molecular diagnosis and genetic counselling of cerebral cavernous malformations.
Resumo:
Meniere's disease is an episodic vestibular syndrome associated with sensorineural hearing loss (SNHL) and tinnitus. Patients with MD have an elevated prevalence of several autoimmune diseases (rheumatoid arthritis, systemic lupus erythematosus, ankylosing spondylitis and psoriasis), which suggests a shared autoimmune background. Functional variants of several genes involved in the NF-κB pathway, such as REL, TNFAIP3, NFKB1 and TNIP1, have been associated with two or more immune-mediated diseases and allelic variations in the TLR10 gene may influence bilateral affectation and clinical course in MD. We have genotyped 716 cases of MD and 1628 controls by using the ImmunoChip, a high-density genotyping array containing 186 autoimmune loci, to explore the association of immune system related-loci with sporadic MD. Although no single nucleotide polymorphism (SNP) reached a genome-wide significant association (p<10(-8)), we selected allelic variants in the NF-kB pathway for further analyses to evaluate the impact of these SNPs in the clinical outcome of MD in our cohort. None of the selected SNPs increased susceptibility for MD in patients with uni or bilateral SNHL. However, two potential regulatory variants in the NFKB1 gene (rs3774937 and rs4648011) were associated with a faster hearing loss progression in patients with unilateral SNHL. So, individuals with unilateral MD carrying the C allele in rs3774937 or G allele in rs4648011 had a shorter mean time to reach hearing stage 3 (>40 dB HL) (log-rank test, corrected p values were p = 0.009 for rs3774937 and p = 0.003 for rs4648011, respectively). No variants influenced hearing in bilateral MD. Our data support that the allelic variants rs3774937 and rs4648011 can modify hearing outcome in patients with MD and unilateral SNHL.
Resumo:
Leptin, a peripheral signal synthetized by the adipocyte to regulate energy metabolism, can also be produced by placenta, where it may work as an autocrine hormone. We have previously demonstrated that leptin promotes proliferation and survival of trophoblastic cells. In the present work, we aimed to study the molecular mechanisms that mediate the survival effect of leptin in placenta. We used the human placenta choriocarcinoma BeWo and first trimester Swan-71 cell lines, as well as human placental explants. We tested the late phase of apoptosis, triggered by serum deprivation, by studying the activation of Caspase-3 and DNA fragmentation. Recombinant human leptin added to BeWo cell line and human placental explants, showed a decrease on Caspase-3 activation. These effects were dose dependent. Maximal effect was achieved at 250 ng leptin/ml. Moreover, inhibition of endogenous leptin expression with 2 µM of an antisense oligonucleotide, reversed Caspase-3 diminution. We also found that the cleavage of Poly [ADP-ribose] polymerase-1 (PARP-1) was diminished in the presence of leptin. We analyzed the presence of low DNA fragments, products from apoptotic DNA cleavage. Placental explants cultivated in the absence of serum in the culture media increased the apoptotic cleavage of DNA and this effect was prevented by the addition of 100 ng leptin/ml. Taken together these results reinforce the survival effect exerted by leptin on placental cells. To improve the understanding of leptin mechanism in regulating the process of apoptosis we determined the expression of different intermediaries in the apoptosis cascade. We found that under serum deprivation conditions, leptin increased the anti-apoptotic BCL-2 protein expression, while downregulated the pro-apoptotic BAX and BID proteins expression in Swan-71 cells and placental explants. In both models leptin augmented BCL-2/BAX ratio. Moreover we have demonstrated that p53, one of the key cell cycle-signaling proteins, is downregulated in the presence of leptin under serum deprivation. On the other hand, we determined that leptin reduced the phosphorylation of Ser-46 p53 that plays a pivotal role for apoptotic signaling by p53. Our data suggest that the observed anti-apoptotic effect of leptin in placenta is in part mediated by the p53 pathway. In conclusion, we provide evidence that demonstrates that leptin is a trophic factor for trophoblastic cells.