992 resultados para Medical Subject Headings::Disciplines and Occupations::Human Activities::Exercise
Resumo:
Hirschsprung disease (HSCR) is defined by the absence of intramural ganglia of Meissner and Auerbach along variable lengths of the gastrointestinal tract. Intestinal neuronal dysplasia (IND) type B is characterized by the malformation of the parasympathetic submucous plexus of the gut. A connection appears to exist between these two enteric nervous system abnormalities. Due to the major role played by the RET proto-oncogene in HSCR, we sought to determine whether this gene was also related to INDB. dHPLC techniques were employed to screen the RET coding region in 23 patients presenting with INDB and 30 patients with a combined HSCR+INDB phenotype. In addition, eight RET single nucleotide polymorphisms (SNPs) were strategically selected and genotyped by TaqMan technology. The distribution of SNPs and haplotypes was compared among the different groups of patients (INDB, HSCR+INDB, HSCR) and the controls. We found several RET mutations in our patients and some differences in the distribution of the RET SNPs among the groups of study. Our results suggest an involvement of RET in the pathogenesis of intestinal INDB, although by different molecular mechanisms than those leading to HSCR. Further investigation is warranted to elucidate these precise mechanisms and to clarify the genetic nature of INDB.
Resumo:
BACKGROUND On its physiological cellular context, PTTG1 controls sister chromatid segregation during mitosis. Within its crosstalk to the cellular arrest machinery, relies a checkpoint of integrity for which gained the over name of securin. PTTG1 was found to promote malignant transformation in 3T3 fibroblasts, and further found to be overexpressed in different tumor types. More recently, PTTG1 has been also related to different processes such as DNA repair and found to trans-activate different cellular pathways involving c-myc, bax or p53, among others. PTTG1 over-expression has been correlated to a worse prognosis in thyroid, lung, colorectal cancer patients, and it can not be excluded that this effect may also occur in other tumor types. Despite the clinical relevance and the increasing molecular characterization of PTTG1, the reason for its up-regulation remains unclear. METHOD We analysed PTTG1 differential expression in PC-3, DU-145 and LNCaP tumor cell lines, cultured in the presence of the methyl-transferase inhibitor 5-Aza-2'-deoxycytidine. We also tested whether the CpG island mapping PTTG1 proximal promoter evidenced a differential methylation pattern in differentiated thyroid cancer biopsies concordant to their PTTG1 immunohistochemistry status. Finally, we performed whole-genome LOH studies using Affymetix 50 K microarray technology and FRET analysis to search for allelic imbalances comprising the PTTG1 locus. CONCLUSION Our data suggest that neither methylation alterations nor LOH are involved in PTTG1 over-expression. These data, together with those previously reported, point towards a post-transcriptional level of misregulation associated to PTTG1 over-expression.
Resumo:
Breast cancer is a heterogeneous disease with varied morphological appearances, molecular features, behavior, and response to therapy. Current routine clinical management of breast cancer relies on the availability of robust clinical and pathological prognostic and predictive factors to support clinical and patient decision making in which potentially suitable treatment options are increasingly available. One of the best-established prognostic factors in breast cancer is histological grade, which represents the morphological assessment of tumor biological characteristics and has been shown to be able to generate important information related to the clinical behavior of breast cancers. Genome-wide microarray-based expression profiling studies have unraveled several characteristics of breast cancer biology and have provided further evidence that the biological features captured by histological grade are important in determining tumor behavior. Also, expression profiling studies have generated clinically useful data that have significantly improved our understanding of the biology of breast cancer, and these studies are undergoing evaluation as improved prognostic and predictive tools in clinical practice. Clinical acceptance of these molecular assays will require them to be more than expensive surrogates of established traditional factors such as histological grade. It is essential that they provide additional prognostic or predictive information above and beyond that offered by current parameters. Here, we present an analysis of the validity of histological grade as a prognostic factor and a consensus view on the significance of histological grade and its role in breast cancer classification and staging systems in this era of emerging clinical use of molecular classifiers.
Resumo:
BACKGROUND Hirschsprung disease (HSCR) is a congenital malformation of the hindgut produced by a disruption in neural crest cell migration during embryonic development. HSCR has a complex genetic etiology and mutations in several genes, mainly the RET proto-oncogene, have been related to the disease. There is a clear predominance of missense/nonsense mutations in these genes whereas copy number variations (CNVs) have been seldom described, probably due to the limitations of conventional techniques usually employed for mutational analysis. METHODS In this study we have aimed to analyze the presence of CNVs in some HSCR genes (RET, EDN3, GDNF and ZFHX1B) using the Multiple Ligation-dependent Probe Amplification (MLPA) approach. RESULTS Two alterations in the MLPA profiles of RET and EDN3 were detected, but a detailed inspection showed that the decrease in the corresponding dosages were due to point mutations affecting the hybridization probes regions. CONCLUSION Our results indicate that CNVs of the gene coding regions analyzed here are not a common molecular cause of Hirschsprung disease. However, further studies are required to determine the presence of CNVs affecting non-coding regulatory regions, as well as other candidate genes.
Resumo:
The clinical relevance of recovering Aspergillus species in intensive care unit patients is unknown. Diagnosis of invasive pulmonary aspergillosis is extremely difficult because there are no specific tests sensitive enough to detect it. The rapidly fatal prognosis of this infection without treatment justifies early antifungal therapy. A clinical algorithm may aid clinicians to manage critically ill patients from whose respiratory specimens Aspergillus spp. have been isolated. This new tool needs to be validated in a large cohort of patients before it can be recommended.
Resumo:
OBJECTIVE Increasing evidence indicates that the Fas/Fas ligand interaction is involved in atherogenesis. We sought to analyze soluble Fas (sFas) and soluble Fas ligand (sFasL) concentrations in subjects at high cardiovascular risk and their modulation by atorvastatin treatment. METHODS AND RESULTS ACTFAST was a 12-week, prospective, multicenter, open-label trial which enrolled subjects (statin-free or statin-treated at baseline) with coronary heart disease (CHD), CHD-equivalent, or 10-year CHD risk > 20%. Subjects with LDL-C between 100 to 220 mg/dL (2.6 to 5.7 mmol/L) and triglycerides < or = 600 mg/dL (6.8 mmol/L) were assigned to a starting dose of atorvastatin (10 to 80 mg/d) based on LDL-C at screening. Of the 2117 subjects enrolled in ACTFAST, AIM sub-study included the 1078 statin-free patients. At study end, 85% of these subjects reached LDL-C target. Mean sFas levels were increased and sFasL were reduced in subjects at high cardiovascular risk compared with healthy subjects. Atorvastatin reduced sFas in the whole population as well as in patients with metabolic syndrome or diabetes. Minimal changes were observed in sFasL. CONCLUSIONS sFas concentrations are increased and sFasL are decreased in subjects at high cardiovascular risk, suggesting that these proteins may be novel markers of vascular injury. Atorvastatin reduces sFas, indicating that short-term treatment with atorvastatin exhibits antiinflammatory effects in these subjects.
Resumo:
Distribution of Toscana virus (TOSV) is evolving with climate change, and pathogenicity may be higher in nonexposed populations outside areas of current prevalence (Mediterranean Basin). To characterize genetic diversity of TOSV, we determined the coding sequences of isolates from Spain and France. TOSV is more diverse than other well-studied phleboviruses (e.g.,Rift Valley fever virus).
Resumo:
BACKGROUND. The phenomenon of misdiagnosing tuberculosis (TB) by laboratory cross-contamination when culturing Mycobacterium tuberculosis (MTB) has been widely reported and it has an obvious clinical, therapeutic and social impact. The final confirmation of a cross-contamination event requires the molecular identification of the same MTB strain cultured from both the potential source of the contamination and from the false-positive candidate. The molecular tool usually applied in this context is IS6110-RFLP which takes a long time to provide an answer, usually longer than is acceptable for microbiologists and clinicians to make decisions. Our purpose in this study is to evaluate a novel PCR-based method, MIRU-VNTR as an alternative to assure a rapid and optimized analysis of cross-contamination alerts. RESULTS. MIRU-VNTR was prospectively compared with IS6110-RFLP for clarifying 19 alerts of false positivity from other laboratories. MIRU-VNTR highly correlated with IS6110-RFLP, reduced the response time by 27 days and clarified six alerts unresolved by RFLP. Additionally, MIRU-VNTR revealed complex situations such as contamination events involving polyclonal isolates and a false-positive case due to the simultaneous cross-contamination from two independent sources. CONCLUSION. Unlike standard RFLP-based genotyping, MIRU-VNTR i) could help reduce the impact of a false positive diagnosis of TB, ii) increased the number of events that could be solved and iii) revealed the complexity of some cross-contamination events that could not be dissected by IS6110-RFLP.
Resumo:
INTRODUCTION In the critically ill patient, there is a continuous production of reactive oxygen species (ROS) that need to be neutralized to prevent oxidative stress (OS). Quantitatively speaking, the glutathione system (GSH) is the most important anti-oxidant endogenous defense. To increase it, glutamine supplementation has been shown to be effective by protecting against the oxidative damage and reducing the morbimortality. OBJECTIVE To assess the effect of adding an alanylglutamine dipeptide to PN on lipid peroxidation lipidica and glutathione metabolism, as well as its relationship with morbidity in critically ill patients. METHODS Determination through spectrophotometry techniques of glutathione peroxidase, glutathione reductase, total glutathione, and maloniladdehyde at admission adn after seven days of hospitalization at the Intensive Care Unit (ICU) in 20 patients older than 18 years on parenteral nutrition therapy. RESULTS The group of patients receiving parenteral nutrition with glutamine supplementation had significant increases in total glutathione (42.35+/-13 vs 55.29+/-12 micromol/l; p<0.05) and the enzymatic activity of glutathione peroxidasa (470+/-195 vs 705+/-214 micromol/l; p<0.05) within one week of nutritional therapy, whereas the group on conventional parenteral nutrition did not show significant changes of any of the parameters studied (p>0.05). However, both mortality and ICU stay were not different between the study group, whereas the severity (assessed by the SOFA score) was lower in the group of patients receiving glutamine (SOFA 5+/-2 vs 8+/-1.8; p<0.05). CONCLUSIONS Glutamine intake in critically ill patients improves the antioxidant defenses, which leads to lower lipid peroxidation and lower morbidity during admission at the ICU.
Resumo:
Current high survival in hemodialysis patients (52% at 5 years) have made the chronic manifestations to emerge such as the high hyponutrition prevalence of these patients, as well as the importance of the nutritional status in their morbimortality. The reason for protein-caloric hyponutrition is multifactorial, although chronic inflammatory conditions associated to the dialysis technique are becoming more and more relevant. The variations in several nutritional biochemical parameters (total proteins, plasma albumin, transferrin, and total cholesterol) have been assessed in 73 hemodialysis patients for one year. The mean age of the patients was 53.3 +/- 18.69 years (43 males and 30 females). The average on hemodialysis program was 43 +/- 33 months, with a mean session duration of 246 +/- 24 minutes, and mean hemodialysis dose administered of 1.37 +/- 0.27 (KT/V) (second generation Daurgidas). A decrease in all the biochemical parameters assessed has been observed, with statistically significant differences: total proteins (p < 0.001), albumin (p < 0.00001), total cholesterol (p < 0.05), and transferrin (p < 0.01). The evolution of the nutritional biochemical parameters assessed showed an important nutritional deterioration of the patients remaining stable with the therapy.
Resumo:
Hemodialysis patients present an increase in plasma homocysteine (Hcy) due to methylation impairment caused by uremia and the deficiency of the co-factors needed (vitamin B, folic acid). This correlates with a more common development of premature vascular disease. There is no consensus on the therapy, with a poor response to oral administration of conventional doses of folic acid. In this work, we assessed the response of hyperhomocysteinemia in 73 regular hemodialysis patients after the administration of 50 mg of parenteral folinic acid for 18 months. Plasma homocysteine of the patients at the time of the study beginning presented mean values of 22.67 (micromol/L). During the first year of supplementation the mean value was kept at 20 micromol/L. From the first year to the end of the 18-months observation period the mean homocysteine levels were 19.58 micromol/L. Although we found a clear trend towards a decrease in plasma homocysteine levels during the treatment period, there were no significant differences. Homocysteine levels did not come back to normal in none of the patients treated.
Resumo:
INTRODUCTION The quality of fats and oils used for frying is as important as the quality of the final product since during the frying process oxidization by-products are formed and become part of the diet, being potentially harmful for the consumers' health. OBJECTIVE To determine the effects of thermo-oxidised fats and oils on the oxidization of plasma lipoproteins inexperimental rats. METHODS Determination by means of spectrophotometric techniques of those substances reacting with thiobarbituric acid and total cholesterol (enzymatic method) in the sera of 40 Wistar rats that consumed crude thermooxidised oils and fats with different levels of malonil aldehyde(MDA) for 30 days. RESULTS The group of rats receiving a diet with thermooxidised oils and fats experienced significant increases in MDA plasma levels throughout the study period, lipid peroxidation being higher with increasing MDA content (p < 0.05) regardless the type of fat compound consumed. However, those rats receiving crude oils and fats kept plasma levels of lipidic peroxides without significant changes throughout the experimental period (p > 0.05). By contrast, cholesterol levels increased towards the end of the experimental period in both the rats consuming crude fats and those consuming thermo-oxidised fats (p < 0.05). CONCLUSIONS Consumption of oils and fats submitted to repeat thermal heating has an influence on plasma lipidic peroxidation, which becomes higher with increasing number of heating processes applied, so that it would advisable not to abuse of reheating the oils used for frying foods.
Resumo:
Artículo histórico. Texto de la “Primera lección Jesús Culebras” dictada en el XXV Congreso Nacional de SENPE, Badajoz, 11-14 de mayo de 2010.
Resumo:
Metabolic, biochemical, and hormonal changes occur in chronic renal failure usually associated with hyponutrition states. In predialysis patients, knowing the nutritional state about water-soluble vitamins such as thiamine, riboflavin, pyridoxine, cianocobalamine, and folic acid is becoming more and more important since some of the manifestations of chronic renal failure may be due to the deficiency of some of these water-soluble vitamins. The metabolic pathways in which most of these vitamins participate are interrelated and it is difficult to understand how the individual deficits of each vitamin affect renal pathology. This work aims at reviewing not only this issue but also the status of these water-soluble vitamins that different authors have found in groups of predialysis patients. On the other hand, the issue on the high prevalence of hyperhomocysteinemia in chronic renal failure as the main mortality risk factor due to cardiovascular pathologies as well as the implication of these vitamins in the metabolism of homocysteine, and consequently in plasma levels of this metabolite in predialysis patients is reviewed.