977 resultados para Medical Subject Headings::Anatomy::Urogenital System::Genitalia::Genitalia, Female::Uterus
Resumo:
We investigated the effects of uninephrectomy (UNX) in 6-week-old male and female rats on blood pressure (BP), renal sodium handling, salt sensitivity, oxidative stress, and renal injury over 18 months postsurgery, studying control sham-operated and UNX-operated rats at 6, 12, and 18 months postsurgery, evaluating their renal sodium handling, BP, urinary isoprostanes, N-acetyl-β-D-glucosaminidase, and proteinuria before and after a 2-week high-salt intake period. At 18 months, plasma variables were measured and kidney samples were taken for the analysis of renal morphology and tissue variables. BP was increased at 6 months in male UNX rats versus controls and at 12 and 18 months in both male and female UNX rats and was increased in male versus female UNX groups at 18 months. UNX did not affect water and sodium excretion under basal conditions and after the different test in male and female rats at different ages. However, the renal function curve was shifted to the right in both male and female UNX rats. High-salt intake increased BP in both UNX groups at 6, 12, and 18 months and in the female control group at 18 months, and it increased proteinuria, N-acetyl-β-D-glucosaminidase, and isoprostanes in both UNX groups throughout the study. Renal lesions at 18 months were more severe in male versus female UNX rats. In summary, long-term UNX increased the BP, creatinine, proteinuria, pathological signs of renal injury, and salt sensitivity. Earlier BP elevation was observed and morphological lesions were more severe in male than in female UNX rats.
Resumo:
Keratinizing squamous metaplasia of the bladder is rare and is usually associated with urinary tract infections and chronic irritation. It is considered a precancerous condition of squamous cell carcinoma, especially when more than 50% of the bladder surface is affected. Medical treatment cannot eradicate this lesion. When it is limited to a small area of the bladder, transurethral resection is possible. Annual cystoscopy with multiple biopsies as well as annual upper tract imaging is proposed in the follow up of these patients. We present a preliminary 2-year followup report of a keratinizing squamous metaplasia of the bladder in a 28-year-old female patient with no previous risk factors.
Resumo:
The vasoconstrictor effect of hydrogen peroxide (H(2)O(2)) on isolated perfused rat kidney was investigated. H(2)O(2) induced vasoconstriction in the isolated rat kidney in a concentration-dependent manner. The vasoconstrictor effects of H(2)O(2) were completely inhibited by 1200 U/ml catalase. Endothelium-removal potentiated the renal response to H(2)O(2). The H(2)O(2) dose-response curve was not significantly modified by administration of the NO inhibitor L-NAME (10(-4) mol/l), whereas it was increased by the non-specific inhibitor of K+-channels, tetraethylammonium (3.10(-3) mol/l). Separately, removal of extracellular Ca(2+), administration of a mixture of calcium desensitizing agents (nitroprusside, papaverine, and diazoxide), and administration of a protein kinase C (PKC) inhibitor (chelerythrine, 10(-5) mol/l) each significantly attenuated the vasoconstrictor response to H(2)O(2), which was virtually suppressed when they were performed together. The pressor response to H(2)O(2) was not affected by: dimethyl sulfoxide (7.10(-5) mol/l) plus mannitol (3.10(-5) mol/l); intracellular Ca(2+) chelation using BAPTA (10(-5) mol/l); calcium store depletion after repeated doses of phenylephrine (10(-5) g/g kidney); or the presence of indomethacin (10(-5) mol/l), ODYA (2.10(-6) mol/l) or genistein (10(-5) mol/l). We conclude that the vasoconstrictor response to H(2)O(2) in the rat renal vasculature comprises the following components: 1) extracellular calcium influx, 2) activation of PKC, and 3) stimulation of pathways leading to sensitization of contractile elements to calcium. Moreover, a reduced pressor responsiveness to H(2)O(2) in female kidneys was observed.
Resumo:
We test the hypothesis that PARP inhibition can decrease acute tubular necrosis (ATN) and other renal lesions related to prolonged cold ischemia/reperfusion (IR) in kidneys preserved at 4°C in University of Wisconsin (UW) solution. Material and Methods. We used 30 male Parp1(+/+) wild-type and 15 male Parp1(0/0) knockout C57BL/6 mice. Fifteen of these wild-type mice were pretreated with 3,4-dihydro-5-[4-(1-piperidinyl)butoxyl]-1(2H)-isoquinolinone (DPQ) at a concentration of 15 mg/kg body weight, used as PARP inhibitor. Subgroups of mice were established (A: IR 45 min/6 h; B: IR + 48 h in UW solution; and C: IR + 48 h in UW solution plus DPQ). We processed samples for morphological, immunohistochemical, ultrastructural, and western-blotting studies. Results. Prolonged cold ischemia time in UW solution increased PARP-1 expression and kidney injury. Preconditioning with PARP inhibitor DPQ plus DPQ supplementation in UW solution decreased PARP-1 nuclear expression in renal tubules and renal damage. Parp1(0/0) knockout mice were more resistant to IR-induced renal lesion. In conclusion, PARP inhibition attenuates ATN and other IR-related renal lesions in mouse kidneys under prolonged cold storage in UW solution. If confirmed, these data suggest that pharmacological manipulation of PARP activity may have salutary effects in cold-stored organs at transplantation.
Resumo:
We test the hypothesis that PARP inhibition can decrease acute tubular necrosis (ATN) and other renal lesions related to prolonged cold ischemia/reperfusion (IR) in kidneys preserved at 4°C in University of Wisconsin (UW) solution. Material and Methods. We used 30 male Parp1(+/+) wild-type and 15 male Parp1(0/0) knockout C57BL/6 mice. Fifteen of these wild-type mice were pretreated with 3,4-dihydro-5-[4-(1-piperidinyl)butoxyl]-1(2H)-isoquinolinone (DPQ) at a concentration of 15 mg/kg body weight, used as PARP inhibitor. Subgroups of mice were established (A: IR 45 min/6 h; B: IR + 48 h in UW solution; and C: IR + 48 h in UW solution plus DPQ). We processed samples for morphological, immunohistochemical, ultrastructural, and western-blotting studies. Results. Prolonged cold ischemia time in UW solution increased PARP-1 expression and kidney injury. Preconditioning with PARP inhibitor DPQ plus DPQ supplementation in UW solution decreased PARP-1 nuclear expression in renal tubules and renal damage. Parp1(0/0) knockout mice were more resistant to IR-induced renal lesion. In conclusion, PARP inhibition attenuates ATN and other IR-related renal lesions in mouse kidneys under prolonged cold storage in UW solution. If confirmed, these data suggest that pharmacological manipulation of PARP activity may have salutary effects in cold-stored organs at transplantation.
Resumo:
De novo lipogenesis and hypercaloric diets are thought to contribute to increased fat mass, particularly in abdominal fat depots. CB1 is highly expressed in adipose tissue, and CB1-mediated signalling is associated with stimulation of lipogenesis and diet-induced obesity, though its contribution to increasing fat deposition in adipose tissue is controversial. Lipogenesis is regulated by transcription factors such as liver X receptor (LXR), sterol-response element binding protein (SREBP) and carbohydrate-responsive-element-binding protein (ChREBP). We evaluated the role of CB1 in the gene expression of these factors and their target genes in relation to lipogenesis in the perirenal adipose tissue (PrAT) of rats fed a high-carbohydrate diet (HCHD) or a high-fat diet (HFD). Both obesity models showed an up-regulated gene expression of CB1 and Lxrα in this adipose pad. The Srebf-1 and ChREBP gene expressions were down-regulated in HFD but not in HCHD. The expression of their target genes encoding for lipogenic enzymes showed a decrease in diet-induced obesity and was particularly dramatic in HFD. In HCHD, CB1 blockade by AM251 reduced the Srebf-1 and ChREBP expression and totally abrogated the remnant gene expression of their target lipogenic enzymes. The phosphorylated form of the extracellular signal-regulated kinase (ERK-p), which participates in the CB1-mediated signalling pathway, was markedly present in the PrAT of obese rats. ERK-p was drastically repressed by AM251 indicating that CB1 is actually functional in PrAT of obese animals, though its activation loses the ability to stimulate lipogenesis in PrAT of obese rats. Even so, the remnant expression levels of lipogenic transcription factors found in HCHD-fed rats are still dependent on CB1 activity. Hence, in HCHD-induced obesity, CB1 blockade may help to further potentiate the reduction of lipogenesis in PrAT by means of inducing down-regulation of the ChREBP and Srebf-1 gene expression, and consequently in the expression of lipogenic enzymes.
Resumo:
This study is part of the project “Pneumocystis Pathogenomics: Unravelling the Colonization-to-Disease Shift,” a Coordination Action supported by the European Commission (ERANET PathoGenoMics). This study was partially supported by the Spanish Ministry of Health (FIS 03/1743). M.A.M.-C. and C.d.l.H. were supported by the Spanish Ministry of Health (FIS CP-04/217 and FIS CM-04/146).
Resumo:
Alterations in motor functions are well-characterized features observed in humans and experimental animals subjected to thyroid hormone dysfunctions during development. Here we show that congenitally hypothyroid rats display hyperactivity in the adult life. This phenotype was associated with a decreased content of cannabinoid receptor type 1 (CB(1)) mRNA in the striatum and a reduction in the number of binding sites in both striatum and projection areas. These findings suggest that hyperactivity may be the consequence of a thyroid hormone deficiency-induced removal of the endocannabinoid tone, normally acting as a brake for hyperactivity at the basal ganglia. In agreement with the decrease in CB(1) receptor gene expression, a lower cannabinoid response, measured by biochemical, genetic and behavioral parameters, was observed in the hypothyroid animals. Finally, both CB(1) receptor gene expression and the biochemical and behavioral dysfunctions found in the hypothyroid animals were improved after a thyroid hormone replacement treatment. Thus, the present study suggests that impairment in the endocannabinoid system can underlay the hyperactive phenotype associated with hypothyroidism.
Resumo:
Studies in animal models and humans suggest anti-inflammatory roles on the N acylethanolamide (NAE)-peroxisome proliferators activated receptor alpha (PPARα) system in inflammatory bowel diseases. However, the presence and function of NAE-PPARα signaling system in the ulcerative colitis (UC) of humans remain unknown as well as its response to active anti-inflammatory therapies such as 5-aminosalicylic acid (5-ASA) and glucocorticoids. Expression of PPARα receptor and PPARα ligands-biosynthetic (NAPE-PLD) and -degrading (FAAH and NAAA) enzymes were analyzed in untreated active and 5-ASA/glucocorticoids/immunomodulators-treated quiescent UC patients compared to healthy human colonic tissue by RT-PCR and immunohistochemical analyses. PPARα, NAAA, NAPE-PLD and FAAH showed differential distributions in the colonic epithelium, lamina propria, smooth muscle and enteric plexus. Gene expression analysis indicated a decrease of PPARα, PPARγ and NAAA, and an increase of FAAH and iNOS in the active colitis mucosa. Immunohistochemical expression in active colitis epithelium confirmed a PPARα decrease, but showed a sharp NAAA increase and a NAPE-PLD decrease, which were partially restored to control levels after treatment. We also characterized the immune cells of the UC mucosa infiltrate. We detected a decreased number of NAAA-positive and an increased number of FAAH-positive immune cells in active UC, which were partially restored to control levels after treatment. NAE-PPARα signaling system is impaired during active UC and 5-ASA/glucocorticoids treatment restored its normal expression. Since 5-ASA actions may work through PPARα and glucocorticoids through NAE-producing/degrading enzymes, the use of PPARα agonists or FAAH/NAAA blockers that increases endogenous PPARα ligands may yield similar therapeutics advantages.
Resumo:
OBJECTIVES Chronic infection with oncogenic HPV genotype is associated with the development of anal dysplasia. Antiretroviral therapy (ART) has been shown to decrease the incidence of cervical carcinoma in women with HIV. We sought to: 1) describe the prevalence and grade of anal dysplasia and HPV infection in our study subjects; 2) analyze the grade of correlation between anal cytology, PCR of high-risk HPV, and histology; 3) identify the factors associated with the appearance of ≥ AIN2 lesions. DESIGN Cross-sectional, prospective study. METHODS A cohort of HIV-positive males (n = 140, mean age = 37 years) who have sex with males (MSM) had epidemiological, clinical and analytical data collected. Anal mucosa samples were taken for cytology, HPV PCR genotyping, and anoscopy for histological analysis. RESULTS Within the cohort, 77.1% were being treated with ART, 8.5% anoscopy findings were AIN2, and 11.4% carcinoma in situ; 74.2% had high-risk (HR), 59.7% low-risk (LR) HPV genotypes and 46.8% had both. The combination of cytology with PCR identifying HR-HPV better predicts the histology findings than either of these factors alone. Logistic regression highlighted ART as a protective factor against ≥ AIN2 lesions (OR: 0.214; 95%CI: 0.054-0.84). Anal/genital condylomas (OR: 4.26; 95%CI: 1.27-14.3), and HPV68 genotype (OR: 10.6; 95%CI: 1.23-91.47) were identified as risk factors. CONCLUSIONS In our cohort, ART has a protective effect against dysplastic anal lesions. Anal/genital warts and HPV68 genotype are predictors of ≥ AIN2 lesions. Introducing PCR HPV genotype evaluation improves screening success over that of cytology alone.
Resumo:
Oleoylethanolamide (OEA) is an agonist of the peroxisome proliferator-activated receptor α (PPARα) and has been described to exhibit neuroprotective properties when administered locally in animal models of several neurological disorder models, including stroke and Parkinson's disease. However, there is little information regarding the effectiveness of systemic administration of OEA on Parkinson's disease. In the present study, OEA-mediated neuroprotection has been tested on in vivo and in vitro models of 6-hydroxydopamine (6-OH-DA)-induced degeneration. The in vivo model was based on the intrastriatal infusion of the neurotoxin 6-OH-DA, which generates Parkinsonian symptoms. Rats were treated 2 h before and after the 6-OH-DA treatment with systemic OEA (0.5, 1, and 5 mg/kg). The Parkinsonian symptoms were evaluated at 1 and 4 wk after the development of lesions. The functional status of the nigrostriatal system was studied through tyrosine-hydroxylase (TH) and hemeoxygenase-1 (HO-1, oxidation marker) immunostaining as well as by monitoring the synaptophysin content. In vitro cell cultures were also treated with OEA and 6-OH-DA. As expected, our results revealed 6-OH-DA induced neurotoxicity and behavioural deficits; however, these alterations were less severe in the animals treated with the highest dose of OEA (5 mg/kg). 6-OH-DA administration significantly reduced the striatal TH-immunoreactivity (ir) density, synaptophysin expression, and the number of nigral TH-ir neurons. Moreover, 6-OH-DA enhanced striatal HO-1 content, which was blocked by OEA (5 mg/kg). In vitro, 0.5 and 1 μM of OEA exerted significant neuroprotection on cultured nigral neurons. These effects were abolished after blocking PPARα with the selective antagonist GW6471. In conclusion, systemic OEA protects the nigrostriatal circuit from 6-OH-DA-induced neurotoxicity through a PPARα-dependent mechanism.
Resumo:
INTRODUCTION: Smoothelin is a cytoskeletal protein of differentiated smooth muscle cells with contractile capacity, distinguishing it from other smooth muscle proteins, such as smooth muscle actin (SMA). OBJECTIVE: To evaluate the expression of smoothelin and SMA in the skin in order to establish specific localizations of smoothelin in smooth muscle cells with high contractile capacity and in the epithelial component of cutaneous adnexal structures. Methods: Immunohistochemical analysis (smoothelin and SMA) was performed in 18 patients with normal skin. RESULTS: SMA was expressed by the vascular structures of superficial, deep, intermediate and adventitial plexuses, whereas smoothelin was specifically expressed in the cytoplasm of smooth muscle cells of the deepest vascular plexus and in no other plexus of the dermis. The hair erector muscle showed intense expression of smoothelin and SMA. Cells with nuclear expression of smoothelin and cytoplasmic expression of SMA were observed in the outer root sheath of the inferior portion of the hair follicles and intense cytoplasmic expression in cells of the dermal sheath to SMA. CONCLUSIONS: We report the first study of smoothelin expression in normal skin, which differentiates the superficial vascular plexus from the deep. The deep plexus comprises vessels with high contractile capacity, which is important for understanding dermal hemodynamics in normal skin and pathological processes. We suggest that the function of smoothelin in the outer root sheath may be to enhance the function of SMA, which has been related to mechanical stress. Smoothelin has not been studied in cutaneous pathology; however we believe it may be a marker specific for the diagnosis of leiomyomas and leiomyosarcomas of the skin. Also, smoothelin could differentiate arteriovenous malformations of cavernous hemangioma of the skin
Resumo:
The purpose of this study was to determine the efficacy of a programme of strength-stamina exercises during haemodialysis, in improving muscular strength, quality of life and functional capacity to carry out everyday activities. A quantitative, experimental pre-test and post-test study was carried out. A programme of strength-stamina exercises in combination with neuromuscular electrostimulation was applied to 10 patients undergoing haemodialysis. These were three simple exercises adapted to the position in which haemodialysis was carried out. All the patients showed a significant improvement in strength, measured using functional tests to carry out everyday activities: walking (6-MWT) and sit-to-stand tests (10-STS). These tests were measured before and after the training programme. They also showed an improvement in the physical dimension of the quality of life measured using the specific questionnaire for renal patients, KDQOL-SFTM.
Resumo:
Background. The enteric nervous system (ENS) is entirely derived from neural crest and its normal development is regulated by specific molecular pathways. Failure in complete ENS formation results in aganglionic gut conditions such as Hirschsprung's disease (HSCR). Recently, PROKR1 expression has been demonstrated in mouse enteric neural crest derived cells and Prok-1 was shown to work coordinately with GDNF in the development of the ENS. Principal Findings. In the present report, ENS progenitors were isolated and characterized from the ganglionic gut from children diagnosed with and without HSCR, and the expression of prokineticin receptors was examined. Immunocytochemical analysis of neurosphere-forming cells demonstrated that both PROKR1 and PROKR2 were present in human enteric neural crest cells. In addition, we also performed a mutational analysis of PROKR1, PROKR2, PROK1 and PROK2 genes in a cohort of HSCR patients, evaluating them for the first time as susceptibility genes for the disease. Several missense variants were detected, most of them affecting highly conserved amino acid residues of the protein and located in functional domains of both receptors, which suggests a possible deleterious effect in their biological function. Conclusions. Our results suggest that not only PROKR1, but also PROKR2 might mediate a complementary signalling to the RET/GFRα1/GDNF pathway supporting proliferation/survival and differentiation of precursor cells during ENS development. These findings, together with the detection of sequence variants in PROKR1, PROK1 and PROKR2 genes associated to HSCR and, in some cases in combination with RET or GDNF mutations, provide the first evidence to consider them as susceptibility genes for HSCR.
Resumo:
Inflammatory processes described in Parkinson’s disease (PD) and its animal models appear to be important in the progression of the pathogenesis, or even a triggering factor. Here we review that peripheral inflammation enhances the degeneration of the nigrostriatal dopaminergic system induced by different insults; different peripheral inflammations have been used, such as IL-1β and the ulcerative colitis model, as well as insults to the dopaminergic system such as 6-hydroxydopamine or lipopolysaccharide. In all cases, an increased loss of dopaminergic neurons was described; inflammation in the substantia nigra increased, displaying a great activation of microglia along with an increase in the production of cytokines such as IL-1β and TNF-α. Increased permeability or disruption of the BBB, with overexpression of the ICAM-1 adhesion molecule and infiltration of circulating monocytes into the substantia nigra, is also involved, since the depletion of circulating monocytes prevents the effects of peripheral inflammation. Data are reviewed in relation to epidemiological studies of PD.