23 resultados para Expression regulation
Resumo:
OBJECTIVE Increasing evidence indicates that the Fas/Fas ligand interaction is involved in atherogenesis. We sought to analyze soluble Fas (sFas) and soluble Fas ligand (sFasL) concentrations in subjects at high cardiovascular risk and their modulation by atorvastatin treatment. METHODS AND RESULTS ACTFAST was a 12-week, prospective, multicenter, open-label trial which enrolled subjects (statin-free or statin-treated at baseline) with coronary heart disease (CHD), CHD-equivalent, or 10-year CHD risk > 20%. Subjects with LDL-C between 100 to 220 mg/dL (2.6 to 5.7 mmol/L) and triglycerides < or = 600 mg/dL (6.8 mmol/L) were assigned to a starting dose of atorvastatin (10 to 80 mg/d) based on LDL-C at screening. Of the 2117 subjects enrolled in ACTFAST, AIM sub-study included the 1078 statin-free patients. At study end, 85% of these subjects reached LDL-C target. Mean sFas levels were increased and sFasL were reduced in subjects at high cardiovascular risk compared with healthy subjects. Atorvastatin reduced sFas in the whole population as well as in patients with metabolic syndrome or diabetes. Minimal changes were observed in sFasL. CONCLUSIONS sFas concentrations are increased and sFasL are decreased in subjects at high cardiovascular risk, suggesting that these proteins may be novel markers of vascular injury. Atorvastatin reduces sFas, indicating that short-term treatment with atorvastatin exhibits antiinflammatory effects in these subjects.
Resumo:
BACKGROUND Mutational analysis of the KRAS gene has recently been established as a complementary in vitro diagnostic tool for the identification of patients with colorectal cancer who will not benefit from anti-epidermal growth factor receptor (EGFR) therapies. Assessment of the mutation status of KRAS might also be of potential relevance in other EGFR-overexpressing tumors, such as those occurring in breast cancer. Although KRAS is mutated in only a minor fraction of breast tumors (5%), about 60% of the basal-like subtype express EGFR and, therefore could be targeted by EGFR inhibitors. We aimed to study the mutation frequency of KRAS in that subtype of breast tumors to provide a molecular basis for the evaluation of anti-EGFR therapies. METHODS Total, genomic DNA was obtained from a group of 35 formalin-fixed paraffin-embedded, triple-negative breast tumor samples. Among these, 77.1% (27/35) were defined as basal-like by immunostaining specific for the established surrogate markers cytokeratin (CK) 5/6 and/or EGFR. KRAS mutational status was determined in the purified DNA samples by Real Time (RT)-PCR using primers specific for the detection of wild-type KRAS or the following seven oncogenic somatic mutations: Gly12Ala, Gly12Asp, Gly12Arg, Gly12Cys, Gly12Ser, Gly12Val and Gly13Asp. RESULTS We found no evidence of KRAS oncogenic mutations in all analyzed tumors. CONCLUSIONS This study indicates that KRAS mutations are very infrequent in triple-negative breast tumors and that EGFR inhibitors may be of potential benefit in the treatment of basal-like breast tumors, which overexpress EGFR in about 60% of all cases.
Resumo:
Developmental genes are silenced in embryonic stem cells by a bivalent histone-based chromatin mark. It has been proposed that this mark also confers a predisposition to aberrant DNA promoter hypermethylation of tumor suppressor genes (TSGs) in cancer. We report here that silencing of a significant proportion of these TSGs in human embryonic and adult stem cells is associated with promoter DNA hypermethylation. Our results indicate a role for DNA methylation in the control of gene expression in human stem cells and suggest that, for genes repressed by promoter hypermethylation in stem cells in vivo, the aberrant process in cancer could be understood as a defect in establishing an unmethylated promoter during differentiation, rather than as an anomalous process of de novo hypermethylation.
Resumo:
OBJECTIVE Munc18c is associated with glucose metabolism and could play a relevant role in obesity. However, little is known about the regulation of Munc18c expression. We analyzed Munc18c gene expression in human visceral (VAT) and subcutaneous (SAT) adipose tissue and its relationship with obesity and insulin. MATERIALS AND METHODS We evaluated 70 subjects distributed in 12 non-obese lean subjects, 23 overweight subjects, 12 obese subjects and 23 nondiabetic morbidly obese patients (11 with low insulin resistance and 12 with high insulin resistance). RESULTS The lean, overweight and obese persons had a greater Munc18c gene expression in adipose tissue than the morbidly obese patients (p<0.001). VAT Munc18c gene expression was predicted by the body mass index (B = -0.001, p = 0.009). In SAT, no associations were found by different multiple regression analysis models. SAT Munc18c gene expression was the main determinant of the improvement in the HOMA-IR index 15 days after bariatric surgery (B = -2148.4, p = 0.038). SAT explant cultures showed that insulin produced a significant down-regulation of Munc18c gene expression (p = 0.048). This decrease was also obtained when explants were incubated with liver X receptor alpha (LXRα) agonist, either without (p = 0.038) or with insulin (p = 0.050). However, Munc18c gene expression was not affected when explants were incubated with insulin plus a sterol regulatory element-binding protein-1c (SREBP-1c) inhibitor (p = 0.504). CONCLUSIONS Munc18c gene expression in human adipose tissue is down-regulated in morbid obesity. Insulin may have an effect on the Munc18c expression, probably through LXRα and SREBP-1c.
Resumo:
BACKGROUND Osteoporosis is a metabolic disorder characterized by a reduction in bone mass and deterioration in the microarchitectural structure of the bone, leading to a higher risk for spontaneous and fragility fractures.The main aim was to study the differences between human bone from osteoporotic and osteoarthritic patients about gene expression (osteogenesis and apoptosis), bone mineral density, microstructural and biomechanic parameters. METHODS We analyzed data from 12 subjects: 6 with osteoporotic hip fracture (OP) and 6 with hip osteoarthritis (OA), as the control group. All subjects underwent medical history, analytical determinations, densitometry, histomorphometric and biochemical study. The expression of 86 genes of osteogenesis and 86 genes of apoptosis was studied in pool of bone samples from patients with OP and OA by PCR array. RESULTS We observed that most of the genes of apoptosis and osteogenesis show a decrease in gene expression in the osteoporotic group in comparison with the osteoarthritic group. The histomorphometric study shows a lower bone quality in the group of patients with hip fractures compared to the osteoarthritic group. CONCLUSIONS The bone tissue of osteoporotic fracture patients is more fragile than the bone of OA patients. Our results showed an osteoporotic bone with a lower capacities for differentiation and osteoblastic activity as well as a lower rate of apoptosis than osteoarthritic bone. These results are related with structural and biochemical parameters.
Resumo:
PARP inhibition can induce anti-neoplastic effects when used as monotherapy or in combination with chemo- or radiotherapy in various tumor settings; however, the basis for the anti-metastasic activities resulting from PARP inhibition remains unknown. PARP inhibitors may also act as modulators of tumor angiogenesis. Proteomic analysis of endothelial cells revealed that vimentin, an intermediary filament involved in angiogenesis and a specific hallmark of EndoMT (endothelial to mesenchymal transition) transformation, was down-regulated following loss of PARP-1 function in endothelial cells. VE-cadherin, an endothelial marker of vascular normalization, was up-regulated in HUVEC treated with PARP inhibitors or following PARP-1 silencing; vimentin over-expression was sufficient to drive to an EndoMT phenotype. In melanoma cells, PARP inhibition reduced pro-metastatic markers, including vasculogenic mimicry. We also demonstrated that vimentin expression was sufficient to induce increased mesenchymal/pro-metastasic phenotypic changes in melanoma cells, including ILK/GSK3-β-dependent E-cadherin down-regulation, Snail1 activation and increased cell motility and migration. In a murine model of metastatic melanoma, PARP inhibition counteracted the ability of melanoma cells to metastasize to the lung. These results suggest that inhibition of PARP interferes with key metastasis-promoting processes, leading to suppression of invasion and colonization of distal organs by aggressive metastatic cells.
Resumo:
Recurrent breast cancer occurring after the initial treatment is associated with poor outcome. A bimodal relapse pattern after surgery for primary tumor has been described with peaks of early and late recurrence occurring at about 2 and 5 years, respectively. Although several clinical and pathological features have been used to discriminate between low- and high-risk patients, the identification of molecular biomarkers with prognostic value remains an unmet need in the current management of breast cancer. Using microarray-based technology, we have performed a microRNA expression analysis in 71 primary breast tumors from patients that either remained disease-free at 5 years post-surgery (group A) or developed early (group B) or late (group C) recurrence. Unsupervised hierarchical clustering of microRNA expression data segregated tumors in two groups, mainly corresponding to patients with early recurrence and those with no recurrence. Microarray data analysis and RT-qPCR validation led to the identification of a set of 5 microRNAs (the 5-miRNA signature) differentially expressed between these two groups: miR-149, miR-10a, miR-20b, miR-30a-3p and miR-342-5p. All five microRNAs were down-regulated in tumors from patients with early recurrence. We show here that the 5-miRNA signature defines a high-risk group of patients with shorter relapse-free survival and has predictive value to discriminate non-relapsing versus early-relapsing patients (AUC = 0.993, p-value<0.05). Network analysis based on miRNA-target interactions curated by public databases suggests that down-regulation of the 5-miRNA signature in the subset of early-relapsing tumors would result in an overall increased proliferative and angiogenic capacity. In summary, we have identified a set of recurrence-related microRNAs with potential prognostic value to identify patients who will likely develop metastasis early after primary breast surgery.
Resumo:
De novo lipogenesis and hypercaloric diets are thought to contribute to increased fat mass, particularly in abdominal fat depots. CB1 is highly expressed in adipose tissue, and CB1-mediated signalling is associated with stimulation of lipogenesis and diet-induced obesity, though its contribution to increasing fat deposition in adipose tissue is controversial. Lipogenesis is regulated by transcription factors such as liver X receptor (LXR), sterol-response element binding protein (SREBP) and carbohydrate-responsive-element-binding protein (ChREBP). We evaluated the role of CB1 in the gene expression of these factors and their target genes in relation to lipogenesis in the perirenal adipose tissue (PrAT) of rats fed a high-carbohydrate diet (HCHD) or a high-fat diet (HFD). Both obesity models showed an up-regulated gene expression of CB1 and Lxrα in this adipose pad. The Srebf-1 and ChREBP gene expressions were down-regulated in HFD but not in HCHD. The expression of their target genes encoding for lipogenic enzymes showed a decrease in diet-induced obesity and was particularly dramatic in HFD. In HCHD, CB1 blockade by AM251 reduced the Srebf-1 and ChREBP expression and totally abrogated the remnant gene expression of their target lipogenic enzymes. The phosphorylated form of the extracellular signal-regulated kinase (ERK-p), which participates in the CB1-mediated signalling pathway, was markedly present in the PrAT of obese rats. ERK-p was drastically repressed by AM251 indicating that CB1 is actually functional in PrAT of obese animals, though its activation loses the ability to stimulate lipogenesis in PrAT of obese rats. Even so, the remnant expression levels of lipogenic transcription factors found in HCHD-fed rats are still dependent on CB1 activity. Hence, in HCHD-induced obesity, CB1 blockade may help to further potentiate the reduction of lipogenesis in PrAT by means of inducing down-regulation of the ChREBP and Srebf-1 gene expression, and consequently in the expression of lipogenic enzymes.