18 resultados para COMBINED ORAL CONTRACEPTIVE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, some epidemiologic studies have attributed adverse effects of air pollutants on health not only to particles and sulfur dioxide but also to photochemical air pollutants (nitrogen dioxide and ozone). The effects are usually small, leading to some inconsistencies in the results of the studies. Furthermore, the different methodologic approaches of the studies used has made it difficult to derive generic conclusions. We provide here a quantitative summary of the short-term effects of photochemical air pollutants on mortality in seven Spanish cities involved in the EMECAM project, using generalized additive models from analyses of single and multiple pollutants. Nitrogen dioxide and ozone data were provided by seven EMECAM cities (Barcelona, Gijón, Huelva, Madrid, Oviedo, Seville, and Valencia). Mortality indicators included daily total mortality from all causes excluding external causes, daily cardiovascular mortality, and daily respiratory mortality. Individual estimates, obtained from city-specific generalized additive Poisson autoregressive models, were combined by means of fixed effects models and, if significant heterogeneity among local estimates was found, also by random effects models. Significant positive associations were found between daily mortality (all causes and cardiovascular) and NO(2), once the rest of air pollutants were taken into account. A 10 microg/m(3) increase in the 24-hr average 1-day NO(2)level was associated with an increase in the daily number of deaths of 0.43% [95% confidence interval (CI), -0.003-0.86%] for all causes excluding external. In the case of significant relationships, relative risks for cause-specific mortality were nearly twice as much as that for total mortality for all the photochemical pollutants. Ozone was independently related only to cardiovascular daily mortality. No independent statistically significant relationship between photochemical air pollutants and respiratory mortality was found. The results in this study suggest that, given the present levels of photochemical pollutants, people living in Spanish cities are exposed to health risks derived from air pollution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND Health-related quality of life (HRQoL) is gaining importance as a valuable outcome measure in oral cancer area. The aim of this study was to assess the general and oral HRQoL of oral and oropharyngeal cancer patients 6 or more months after treatment and compare them with a population free from this disease. METHODS A cross-sectional study was carried out with patients treated for oral cancer at least 6 months post-treatment and a gender and age group matched control group. HRQoL was measured with the 12-Item Short Form Health Survey (SF-12); oral HRQoL (OHRQoL) was evaluated using the Oral Health Impact Profile (OHIP-14) and the Oral Impacts on Daily Performances (OIDP). Multivariable regression models assessed the association between the outcomes (SF-12, OHIP-14 and OIDP) and the exposure (patients versus controls), adjusting for sex, age, social class, functional tooth units and presence of illness. RESULTS For patients (n = 142) and controls (n = 142), 64.1% were males. The mean age was 65.2 (standard deviation (sd): 12.9) years in patients and 67.5 (sd: 13.7) years in controls. Patients had worse SF-12 Physical Component Summary scores than controls even in fully the adjusted model [β-coefficient = -0.11 (95% CI: -5.12-(-0.16)]. The differences in SF-12 Mental Component Summary were not statistically significant. Regarding OHRQoL patients had 11.63 (95% CI: 6.77-20.01) higher odds for the OHIP-14 and 21.26 (95% CI: 11.54-39.13) higher odds for OIDP of being in a worse category of OHRQoL compared to controls in the fully adjusted model. CONCLUSION At least 6 months after treatment, oral cancer patients had worse OHRQoL, worse physical HRQoL and similar psychological HRQoL than the general population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND The combined inhibition of BRAF and MEK is hypothesized to improve clinical outcomes in patients with melanoma by preventing or delaying the onset of resistance observed with BRAF inhibitors alone. This randomized phase 3 study evaluated the combination of the BRAF inhibitor vemurafenib and the MEK inhibitor cobimetinib. METHODS We randomly assigned 495 patients with previously untreated unresectable locally advanced or metastatic BRAF V600 mutation-positive melanoma to receive vemurafenib and cobimetinib (combination group) or vemurafenib and placebo (control group). The primary end point was investigator-assessed progression-free survival. RESULTS The median progression-free survival was 9.9 months in the combination group and 6.2 months in the control group (hazard ratio for death or disease progression, 0.51; 95% confidence interval [CI], 0.39 to 0.68; P<0.001). The rate of complete or partial response in the combination group was 68%, as compared with 45% in the control group (P<0.001), including rates of complete response of 10% in the combination group and 4% in the control group. Progression-free survival as assessed by independent review was similar to investigator-assessed progression-free survival. Interim analyses of overall survival showed 9-month survival rates of 81% (95% CI, 75 to 87) in the combination group and 73% (95% CI, 65 to 80) in the control group. Vemurafenib and cobimetinib was associated with a nonsignificantly higher incidence of adverse events of grade 3 or higher, as compared with vemurafenib and placebo (65% vs. 59%), and there was no significant difference in the rate of study-drug discontinuation. The number of secondary cutaneous cancers decreased with the combination therapy. CONCLUSIONS The addition of cobimetinib to vemurafenib was associated with a significant improvement in progression-free survival among patients with BRAF V600-mutated metastatic melanoma, at the cost of some increase in toxicity. (Funded by F. Hoffmann-La Roche/Genentech; coBRIM ClinicalTrials.gov number, NCT01689519.).