16 resultados para Tumor initiating cells
Resumo:
Developmental genes are silenced in embryonic stem cells by a bivalent histone-based chromatin mark. It has been proposed that this mark also confers a predisposition to aberrant DNA promoter hypermethylation of tumor suppressor genes (TSGs) in cancer. We report here that silencing of a significant proportion of these TSGs in human embryonic and adult stem cells is associated with promoter DNA hypermethylation. Our results indicate a role for DNA methylation in the control of gene expression in human stem cells and suggest that, for genes repressed by promoter hypermethylation in stem cells in vivo, the aberrant process in cancer could be understood as a defect in establishing an unmethylated promoter during differentiation, rather than as an anomalous process of de novo hypermethylation.
Resumo:
BACKGROUND Protein-bound polysaccharide (PSK) is derived from the CM-101 strain of the fungus Coriolus versicolor and has shown anticancer activity in vitro and in in vivo experimental models and human cancers. Several randomized clinical trials have demonstrated that PSK has great potential in adjuvant cancer therapy, with positive results in the adjuvant treatment of gastric, esophageal, colorectal, breast and lung cancers. These studies have suggested the efficacy of PSK as an immunomodulator of biological responses. The precise molecular mechanisms responsible for its biological activity have yet to be fully elucidated. METHODS The in vitro cytotoxic anti-tumour activity of PSK has been evaluated in various tumour cell lines derived from leukaemias, melanomas, fibrosarcomas and cervix, lung, pancreas and gastric cancers. Tumour cell proliferation in vitro was measured by BrdU incorporation and viable cell count. Effect of PSK on human peripheral blood lymphocyte (PBL) proliferation in vitro was also analyzed. Studies of cell cycle and apoptosis were performed in PSK-treated cells. RESULTS PSK showed in vitro inhibition of tumour cell proliferation as measured by BrdU incorporation and viable cell count. The inhibition ranged from 22 to 84%. Inhibition mechanisms were identified as cell cycle arrest, with cell accumulation in G0/G1 phase and increase in apoptosis and caspase-3 expression. These results indicate that PSK has a direct cytotoxic activity in vitro, inhibiting tumour cell proliferation. In contrast, PSK shows a synergistic effect with IL-2 that increases PBL proliferation. CONCLUSION These results indicate that PSK has cytotoxic activity in vitro on tumour cell lines. This new cytotoxic activity of PSK on tumour cells is independent of its previously described immunomodulatory activity on NK cells.
Resumo:
Aquaporins (AQPs) are membrane channels that conduct water and small solutes such as glycerol and are involved in many physiological functions. Aquaporin-based modulator drugs are predicted to be of broad potential utility in the treatment of several diseases. Until today few AQP inhibitors have been described as suitable candidates for clinical development. Here we report on the potent inhibition of AQP3 channels by gold(III) complexes screened on human red blood cells (hRBC) and AQP3-transfected PC12 cells by a stopped-flow method. Among the various metal compounds tested, Auphen is the most active on AQP3 (IC(50) = 0.8±0.08 µM in hRBC). Interestingly, the compound poorly affects the water permeability of AQP1. The mechanism of gold inhibition is related to the ability of Au(III) to interact with sulphydryls groups of proteins such as the thiolates of cysteine residues. Additional DFT and modeling studies on possible gold compound/AQP adducts provide a tentative description of the system at a molecular level. The mapping of the periplasmic surface of an homology model of human AQP3 evidenced the thiol group of Cys40 as a likely candidate for binding to gold(III) complexes. Moreover, the investigation of non-covalent binding of Au complexes by docking approaches revealed their preferential binding to AQP3 with respect to AQP1. The high selectivity and low concentration dependent inhibitory effect of Auphen (in the nanomolar range) together with its high water solubility makes the compound a suitable drug lead for future in vivo studies. These results may present novel metal-based scaffolds for AQP drug development.
Resumo:
CONTEXT Adipose tissue hypoxia and endoplasmic reticulum (ER) stress may link the presence of chronic inflammation and macrophage infiltration in severely obese subjects. We previously reported the up-regulation of TNF-like weak inducer of apoptosis (TWEAK)/fibroblast growth factor-inducible 14 (Fn14) axis in adipose tissue of severely obese type 2 diabetic subjects. OBJECTIVES The objective of the study was to examine TWEAK and Fn14 adipose tissue expression in obesity, severe obesity, and type 2 diabetes in relation to hypoxia and ER stress. DESIGN In the obesity study, 19 lean, 28 overweight, and 15 obese nondiabetic subjects were studied. In the severe obesity study, 23 severely obese and 35 control subjects were studied. In the type 2 diabetes study, 11 type 2 diabetic and 36 control subjects were studied. The expression levels of the following genes were analyzed in paired samples of sc and visceral adipose tissue: Fn14, TWEAK, VISFATIN, HYOU1, FIAF, HIF-1a, VEGF, GLUT-1, GRP78, and XBP-1. The effect of hypoxia, inflammation, and ER stress on the expression of TWEAK and Fn14 was examined in human adipocyte and macrophage cell lines. RESULTS Up-regulation of TWEAK/Fn14 and hypoxia and ER stress surrogate gene expression was observed in sc and visceral adipose tissue only in our severely obese cohort. Hypoxia modulates TWEAK or Fn14 expression in neither adipocytes nor macrophages. On the contrary, inflammation up-regulated TWEAK in macrophages and Fn14 expression in adipocytes. Moreover, TWEAK had a proinflammatory effect in adipocytes mediated by the nuclear factor-kappaB and ERK but not JNK signaling pathways. CONCLUSIONS Our data suggest that TWEAK acts as a pro-inflammatory cytokine in the adipose tissue and that inflammation, but not hypoxia, may be behind its up-regulation in severe obesity.
Resumo:
The chemotherapeutic drug 5-FU is widely used in the treatment of a range of cancers, but resistance to the drug remains a major clinical problem. Since defects in the mediators of apoptosis may account for chemo-resistance, the identification of new targets involved in 5-FU-induced apoptosis is of main clinical interest. We have identified the ds-RNA-dependent protein kinase (PKR)as a key molecular target of 5-FU involved in apoptosis induction in human colon and breast cancer cell lines. PKR distribution and activation, apoptosis induction and cytotoxic effects were analyzed during 5-FU and 5-FU/IFNalpha treatment in several colon and breast cancer cell lines with different p53 status. PKR protein was activated by 5-FU treatment in a p53-independent manner,inducing phosphorylation of the protein synthesis translation initiation factor eIF-2alpha and cell death by apoptosis. Furthermore, PKR interference promoted a decreased response to 5-FU treatment and those cells were not affected by the synergistic antitumor activity of 5-FU/IFNalpha combination. These results, taken together, provide evidence that PKR is a key molecular target of 5-FU with potential relevance in the clinical use of this drug.
Resumo:
BACKGROUND Phytopharmacological studies of different Calendula extracts have shown anti-inflammatory, anti-viral and anti-genotoxic properties of therapeutic interest. In this study, we evaluated the in vitro cytotoxic anti-tumor and immunomodulatory activities and in vivo anti-tumor effect of Laser Activated Calendula Extract (LACE), a novel extract of the plant Calendula Officinalis (Asteraceae). METHODS An aqueous extract of Calendula Officinalis was obtained by a novel extraction method in order to measure its anti-tumor and immunomodulatory activities in vitro. Tumor cell lines derived from leukemias, melanomas, fibrosarcomas and cancers of breast, prostate, cervix, lung, pancreas and colorectal were used and tumor cell proliferation in vitro was measured by BrdU incorporation and viable cell count. Effect of LACE on human peripheral blood lymphocyte (PBL) proliferation in vitro was also analyzed. Studies of cell cycle and apoptosis were performed in LACE-treated cells. In vivo anti-tumor activity was evaluated in nude mice bearing subcutaneously human Ando-2 melanoma cells. RESULTS The LACE extract showed a potent in vitro inhibition of tumor cell proliferation when tested on a wide variety of human and murine tumor cell lines. The inhibition ranged from 70 to 100%. Mechanisms of inhibition were identified as cell cycle arrest in G0/G1 phase and Caspase-3-induced apoptosis. Interestingly, the same extract showed an opposite effect when tested on PBLs and NKL cell line, in which in vitro induction of proliferation and activation of these cells was observed. The intraperitoneal injection or oral administration of LACE extract in nude mice inhibits in vivo tumor growth of Ando-2 melanoma cells and prolongs the survival day of the mice. CONCLUSION These results indicate that LACE aqueous extract has two complementary activities in vitro with potential anti-tumor therapeutic effect: cytotoxic tumor cell activity and lymphocyte activation. The LACE extract presented in vivo anti-tumoral activity in nude mice against tumor growth of Ando-2 melanoma cells.
Resumo:
ATM and PARP-1 are two of the most important players in the cell's response to DNA damage. PARP-1 and ATM recognize and bound to both single and double strand DNA breaks in response to different triggers. Here we report that ATM and PARP-1 form a molecular complex in vivo in undamaged cells and this association increases after gamma-irradiation. ATM is also modified by PARP-1 during DNA damage. We have also evaluated the impact of PARP-1 absence or inhibition on ATM-kinase activity and have found that while PARP-1 deficient cells display a defective ATM-kinase activity and reduced gamma-H2AX foci formation in response to gamma-irradiation, PARP inhibition on itself is able to activate ATM-kinase. PARP inhibition induced gamma H2AX foci accumulation, in an ATM-dependent manner. Inhibition of PARP also induces DNA double strand breaks which were dependent on the presence of ATM. As consequence ATM deficient cells display an increased sensitivity to PARP inhibition. In summary our results show that while PARP-1 is needed in the response of ATM to gamma irradiation, the inhibition of PARP induces DNA double strand breaks (which are resolved in and ATM-dependent pathway) and activates ATM kinase.
Resumo:
Androgen-sensitive prostate cancer cells turn androgen resistant through complex mechanisms that involve dysregulation of apoptosis. We investigated the role of antiapoptotic Bcl-xL in the progression of prostate cancer as well as the interactions of Bcl-xL with proapoptotic Bax and Bak in androgen-dependent and -independent prostate cancer cells. Immunohistochemical analysis was used to study the expression of Bcl-xL in a series of 139 prostate carcinomas and its association with Gleason grade and time to hormone resistance. Expression of Bcl-xL was more abundant in prostate carcinomas of higher Gleason grades and significantly associated with the onset of hormone-refractory disease. In vivo interactions of Bcl-xL with Bax or Bak in untreated and camptothecin-treated LNCaP and PC3 cells were investigated by means of coimmunoprecipitation. In the absence of any stimuli, Bcl-xL interacts with Bax and Bak in androgen-independent PC3 cells but only with Bak in androgen-dependent LNCaP cells. Interactions of Bcl-xL with Bax and Bak were also evidenced in lysates from high-grade prostate cancer tissues. In LNCaP cells treated with camptothecin, an inhibitor of topoisomerase I, the interaction between Bcl-xL and Bak was absent after 36 h, Bcl-xL decreased gradually and Bak increased coincidentally with the progress of apoptosis. These results support a model in which Bcl-xL would exert an inhibitory effect over Bak via heterodimerization. We propose that these interactions may provide mechanisms for suppressing the activity of proapoptotic Bax and Bak in prostate cancer cells and that Bcl-xL expression contributes to androgen resistance and progression of prostate cancer.
Resumo:
BACKGROUND Alterations in the cadherin-catenin adhesion complexes are involved in tumor initiation, progression and metastasis. However, the functional implication of distinct cadherin types in breast cancer biology is still poorly understood. METHODS To compare the functional role of E-cadherin and P-cadherin in invasive breast cancer, we stably transfected these molecules into the MDA-MB-231 cell line, and investigated their effects on motility, invasion and gene expression regulation. RESULTS Expression of either E- and P-cadherin significantly increased cell aggregation and induced a switch from fibroblastic to epithelial morphology. Although expression of these cadherins did not completely reverse the mesenchymal phenotype of MDA-MB-231 cells, both E- and P-cadherin decreased fibroblast-like migration and invasion through extracellular matrix in a similar way. Moreover, microarray gene expression analysis of MDA-MB-231 cells after expression of E- and P-cadherins revealed that these molecules can activate signaling pathways leading to significant changes in gene expression. Although the expression patterns induced by E- and P-cadherin showed more similarities than differences, 40 genes were differentially modified by the expression of either cadherin type. CONCLUSION E- and P-cadherin have similar functional consequences on the phenotype and invasive behavior of MDA-MB-231 cells. Moreover, we demonstrate for the first time that these cadherins can induce both common and specific gene expression programs on invasive breast cancer cells. Importantly, these identified genes are potential targets for future studies on the functional consequences of altered cadherin expression in human breast cancer.
Resumo:
BACKGROUND Phytopharmacological studies of different Calendula extracts have shown anti-inflammatory, anti-viral and anti-genotoxic properties of therapeutic interest. In this study, we evaluated the in vitro cytotoxic anti-tumor and immunomodulatory activities and in vivo anti-tumor effect of Laser Activated Calendula Extract (LACE), a novel extract of the plant Calendula Officinalis (Asteraceae). METHODS An aqueous extract of Calendula Officinalis was obtained by a novel extraction method in order to measure its anti-tumor and immunomodulatory activities in vitro. Tumor cell lines derived from leukemias, melanomas, fibrosarcomas and cancers of breast, prostate, cervix, lung, pancreas and colorectal were used and tumor cell proliferation in vitro was measured by BrdU incorporation and viable cell count. Effect of LACE on human peripheral blood lymphocyte (PBL) proliferation in vitro was also analyzed. Studies of cell cycle and apoptosis were performed in LACE-treated cells. In vivo anti-tumor activity was evaluated in nude mice bearing subcutaneously human Ando-2 melanoma cells. RESULTS The LACE extract showed a potent in vitro inhibition of tumor cell proliferation when tested on a wide variety of human and murine tumor cell lines. The inhibition ranged from 70 to 100%. Mechanisms of inhibition were identified as cell cycle arrest in G0/G1 phase and Caspase-3-induced apoptosis. Interestingly, the same extract showed an opposite effect when tested on PBLs and NKL cell line, in which in vitro induction of proliferation and activation of these cells was observed. The intraperitoneal injection or oral administration of LACE extract in nude mice inhibits in vivo tumor growth of Ando-2 melanoma cells and prolongs the survival day of the mice. CONCLUSION These results indicate that LACE aqueous extract has two complementary activities in vitro with potential anti-tumor therapeutic effect: cytotoxic tumor cell activity and lymphocyte activation. The LACE extract presented in vivo anti-tumoral activity in nude mice against tumor growth of Ando-2 melanoma cells.
Resumo:
BACKGROUND We studied anomalous extracellular mRNAs in plasma from patients with diffuse large B-cell lymphoma (DLBCL) and their survival implications. mRNAs studied have been reported in the literature as markers of poor (BCL2, CCND2, MYC) and favorable outcome (LMO2, BCL6, FN1) in tumors. These markers were also analyzed in lymphoma tissues to test possible associations with their presence in plasma. METHODOLOGY/PRINCIPAL FINDINGS mRNA from 42 plasma samples and 12 tumors from patients with DLBCL was analyzed by real-time PCR. Samples post-treatment were studied. The immunohistochemistry of BCL2 and BCL6 was defined. Presence of circulating tumor cells was determined by analyzing the clonality of the immunoglobulin heavy-chain genes by PCR. In DLBCL, MYC mRNA was associated with short overall survival. mRNA targets with unfavorable outcome in tumors were associated with characteristics indicative of poor prognosis, with partial treatment response and with short progression-free survival in patients with complete response. In patients with low IPI score, unfavorable mRNA targets were related to shorter overall survival, partial response, high LDH levels and death. mRNA disappeared in post-treatment samples of patients with complete response, and persisted in those with partial response or death. No associations were found between circulating tumor cells and plasma mRNA. Absence of BCL6 protein in tumors was associated with presence of unfavorable plasma mRNA. CONCLUSIONS/SIGNIFICANCE Through a non-invasive procedure, tumor-derived mRNAs can be obtained in plasma. mRNA detected in plasma did not proceed from circulating tumor cells. In our study, unfavorable targets in plasma were associated with poor prognosis in B-cell lymphomas, mainly MYC mRNA. Moreover, the unfavorable targets in plasma could help us to classify patients with poor outcome within the good prognosis group according to IPI.
Resumo:
Cancer immunosurveillance theory has emphasized the role of escape mechanisms in tumor growth. In this respect, a very important factor is the molecular characterization of the mechanisms by which tumor cells evade immune recognition and destruction. Among the many escape mechanisms identified, alterations in classical and non-classical HLA (Human Leucocyte Antigens) class I and class II expression by tumor cells are of particular interest. In addition to the importance of HLA molecules, tumor-associated antigens and accessory/co-stimulatory molecules are also involved in immune recognition. The loss of HLA class I antigen expression and of co-stimulatory molecules can occur at genetic, transcriptional and post-transcriptional levels. Epigenetic defects are involved in at least some mechanisms that preclude mounting a successful host-antitumor response involving the HLA system, tumor-associated antigens, and accessory/co-stimulatory molecules. This review summarizes our current understanding of the role of methylation in the regulation of molecules involved in the tumor immune response.
Resumo:
Preoperative chemoradiation significantly improves oncological outcome in locally advanced rectal cancer. However there is no effective method of predicting tumor response to chemoradiation in these patients. Peripheral blood mononuclear cells have emerged recently as pathology markers of cancer and other diseases, making possible their use as therapy predictors. Furthermore, the importance of the immune response in radiosensivity of solid organs led us to hypothesized that microarray gene expression profiling of peripheral blood mononuclear cells could identify patients with response to chemoradiation in rectal cancer. Thirty five 35 patients with locally advanced rectal cancer were recruited initially to perform the study. Peripheral blood samples were obtained before neaodjuvant treatment. RNA was extracted and purified to obtain cDNA and cRNA for hybridization of microarrays included in Human WG CodeLink bioarrays. Quantitative real time PCR was used to validate microarray experiment data. Results were correlated with pathological response, according to Mandard´s criteria and final UICC Stage (patients with tumor regression grade 1-2 and downstaging being defined as responders and patients with grade 3-5 and no downstaging as non-responders). Twenty seven out of 35 patients were finally included in the study. We performed a multiple t-test using Significance Analysis of Microarrays, to find those genes differing significantly in expression, between responders (n = 11) and non-responders (n = 16) to CRT. The differently expressed genes were: BC 035656.1, CIR, PRDM2, CAPG, FALZ, HLA-DPB2, NUPL2, and ZFP36. The measurement of FALZ (p = 0.029) gene expression level determined by qRT-PCR, showed statistically significant differences between the two groups. Gene expression profiling reveals novel genes in peripheral blood samples of mononuclear cells that could predict responders and non-responders to chemoradiation in patients with locally advanced rectal cancer. Moreover, our investigation added further evidence to the importance of mononuclear cells' mediated response in the neoadjuvant treatment of rectal cancer.
Resumo:
Gut mesodermal tissues originate from the splanchnopleural mesenchyme. However, the embryonic gastrointestinal coelomic epithelium gives rise to mesenchymal cells, whose significance and fate are little known. Our aim was to investigate the contribution of coelomic epithelium-derived cells to the intestinal development. We have used the transgenic mouse model mWt1/IRES/GFP-Cre (Wt1(cre)) crossed with the Rosa26R-EYFP reporter mouse. In the gastrointestinal duct Wt1, the Wilms' tumor suppressor gene, is specific and dynamically expressed in the coelomic epithelium. In the embryos obtained from the crossbreeding, the Wt1-expressing cell lineage produces the yellow fluorescent protein (YFP) allowing for colocalization with differentiation markers through confocal microscopy and flow cytometry. Wt1(cre-YFP) cells were very abundant throughout the intestine during midgestation, declining in neonates. Wt1(cre-YFP) cells were also transiently observed within the mucosa, being apparently released into the intestinal lumen. YFP was detected in cells contributing to intestinal vascularization (endothelium, pericytes and smooth muscle), visceral musculature (circular, longitudinal and submucosal) as well as in Cajal and Cajal-like interstitial cells. Wt1(cre-YFP) mesenchymal cells expressed FGF9, a critical growth factor for intestinal development, as well as PDGFRα, mainly within developing villi. Thus, a cell population derived from the coelomic epithelium incorporates to the gut mesenchyme and contribute to a variety of intestinal tissues, probably playing also a signaling role. Our results support the origin of interstitial cells of Cajal and visceral circular muscle from a common progenitor expressing anoctamin-1 and SMCα-actin. Coelomic-derived cells contribute to the differentiation of at least a part of the interstitial cells of Cajal.
Resumo:
Leptin, a peripheral signal synthetized by the adipocyte to regulate energy metabolism, can also be produced by placenta, where it may work as an autocrine hormone. We have previously demonstrated that leptin promotes proliferation and survival of trophoblastic cells. In the present work, we aimed to study the molecular mechanisms that mediate the survival effect of leptin in placenta. We used the human placenta choriocarcinoma BeWo and first trimester Swan-71 cell lines, as well as human placental explants. We tested the late phase of apoptosis, triggered by serum deprivation, by studying the activation of Caspase-3 and DNA fragmentation. Recombinant human leptin added to BeWo cell line and human placental explants, showed a decrease on Caspase-3 activation. These effects were dose dependent. Maximal effect was achieved at 250 ng leptin/ml. Moreover, inhibition of endogenous leptin expression with 2 µM of an antisense oligonucleotide, reversed Caspase-3 diminution. We also found that the cleavage of Poly [ADP-ribose] polymerase-1 (PARP-1) was diminished in the presence of leptin. We analyzed the presence of low DNA fragments, products from apoptotic DNA cleavage. Placental explants cultivated in the absence of serum in the culture media increased the apoptotic cleavage of DNA and this effect was prevented by the addition of 100 ng leptin/ml. Taken together these results reinforce the survival effect exerted by leptin on placental cells. To improve the understanding of leptin mechanism in regulating the process of apoptosis we determined the expression of different intermediaries in the apoptosis cascade. We found that under serum deprivation conditions, leptin increased the anti-apoptotic BCL-2 protein expression, while downregulated the pro-apoptotic BAX and BID proteins expression in Swan-71 cells and placental explants. In both models leptin augmented BCL-2/BAX ratio. Moreover we have demonstrated that p53, one of the key cell cycle-signaling proteins, is downregulated in the presence of leptin under serum deprivation. On the other hand, we determined that leptin reduced the phosphorylation of Ser-46 p53 that plays a pivotal role for apoptotic signaling by p53. Our data suggest that the observed anti-apoptotic effect of leptin in placenta is in part mediated by the p53 pathway. In conclusion, we provide evidence that demonstrates that leptin is a trophic factor for trophoblastic cells.