3 resultados para recursive filtering

em Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traditionally, it is assumed that the population size of cities in a country follows a Pareto distribution. This assumption is typically supported by nding evidence of Zipf's Law. Recent studies question this nding, highlighting that, while the Pareto distribution may t reasonably well when the data is truncated at the upper tail, i.e. for the largest cities of a country, the log-normal distribution may apply when all cities are considered. Moreover, conclusions may be sensitive to the choice of a particular truncation threshold, a yet overlooked issue in the literature. In this paper, then, we reassess the city size distribution in relation to its sensitivity to the choice of truncation point. In particular, we look at US Census data and apply a recursive-truncation approach to estimate Zipf's Law and a non-parametric alternative test where we consider each possible truncation point of the distribution of all cities. Results con rm the sensitivity of results to the truncation point. Moreover, repeating the analysis over simulated data con rms the di culty of distinguishing a Pareto tail from the tail of a log-normal and, in turn, identifying the city size distribution as a false or a weak Pareto law.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study how the use of judgement or “add-factors” in forecasting may disturb the set of equilibrium outcomes when agents learn using recursive methods. We isolate conditions under which new phenomena, which we call exuberance equilibria, can exist in a standard self-referential environment. Local indeterminacy is not a requirement for existence. We construct a simple asset pricing example and find that exuberance equilibria, when they exist, can be extremely volatile relative to fundamental equilibria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper demonstrates that an asset pricing model with least-squares learning can lead to bubbles and crashes as endogenous responses to the fundamentals driving asset prices. When agents are risk-averse they need to make forecasts of the conditional variance of a stock’s return. Recursive updating of both the conditional variance and the expected return implies several mechanisms through which learning impacts stock prices. Extended periods of excess volatility, bubbles and crashes arise with a frequency that depends on the extent to which past data is discounted. A central role is played by changes over time in agents’ estimates of risk.