4 resultados para nonlinear identification

em Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper applies recently developed heterogeneous nonlinear and linear panel unit root tests that account for cross-sectional dependence to 24 OECD and 33 non-OECD countries’ consumption-income ratios over the period 1951–2003. We apply a recently developed methodology that facilitates the use of panel tests to identify which individual cross-sectional units are stationary and which are nonstationary. This extends evidence provided in the recent literature to consider both linear and nonlinear adjustment in panel unit root tests, to address the issue of cross-sectional dependence, and to substantially expand both time-series and cross sectional dimensions of the data analysed. We find that the majority (65%) of the series are nonstationary with slightly fewer OECD countries’ (61%) series exhibiting a unit root than non-OECD countries (68%).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we propose a novel empirical extension of the standard market microstructure order flow model. The main idea is that heterogeneity of beliefs in the foreign exchange market can cause model instability and such instability has not been fully accounted for in the existing empirical literature. We investigate this issue using two di¤erent data sets and focusing on out- of-sample forecasts. Forecasting power is measured using standard statistical tests and, additionally, using an alternative approach based on measuring the economic value of forecasts after building a portfolio of assets. We nd there is a substantial economic value on conditioning on the proposed models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years there has been increasing concern about the identification of parameters in dynamic stochastic general equilibrium (DSGE) models. Given the structure of DSGE models it may be difficult to determine whether a parameter is identified. For the researcher using Bayesian methods, a lack of identification may not be evident since the posterior of a parameter of interest may differ from its prior even if the parameter is unidentified. We show that this can even be the case even if the priors assumed on the structural parameters are independent. We suggest two Bayesian identification indicators that do not suffer from this difficulty and are relatively easy to compute. The first applies to DSGE models where the parameters can be partitioned into those that are known to be identified and the rest where it is not known whether they are identified. In such cases the marginal posterior of an unidentified parameter will equal the posterior expectation of the prior for that parameter conditional on the identified parameters. The second indicator is more generally applicable and considers the rate at which the posterior precision gets updated as the sample size (T) is increased. For identified parameters the posterior precision rises with T, whilst for an unidentified parameter its posterior precision may be updated but its rate of update will be slower than T. This result assumes that the identified parameters are pT-consistent, but similar differential rates of updates for identified and unidentified parameters can be established in the case of super consistent estimators. These results are illustrated by means of simple DSGE models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a nonlinear heterogeneous panel unit root test for testing the null hypothesis of unit-roots processes against the alternative that allows a proportion of units to be generated by globally stationary ESTAR processes and a remaining non-zero proportion to be generated by unit root processes. The proposed test is simple to implement and accommodates cross sectional dependence. We show that the distribution of the test statistic is free of nuisance parameters as (N, T) −! 1. Monte Carlo simulation shows that our test holds correct size and under the hypothesis that data are generated by globally stationary ESTAR processes has a better power than the recent test proposed in Pesaran [2007]. Various applications are provided.