3 resultados para mathematical functions

em Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates dynamic completeness of financial markets in which the underlying risk process is a multi-dimensional Brownian motion and the risky securities dividends geometric Brownian motions. A sufficient condition, that the instantaneous dispersion matrix of the relative dividends is non-degenerate, was established recently in the literature for single-commodity, pure-exchange economies with many heterogenous agents, under the assumption that the intermediate flows of all dividends, utilities, and endowments are analytic functions. For the current setting, a different mathematical argument in which analyticity is not needed shows that a slightly weaker condition suffices for general pricing kernels. That is, dynamic completeness obtains irrespectively of preferences, endowments, and other structural elements (such as whether or not the budget constraints include only pure exchange, whether or not the time horizon is finite with lump-sum dividends available on the terminal date, etc.)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the line opened by Kalai and Muller (1997), we explore new conditions on prefernce domains which make it possible to avoid Arrow's impossibility result. In our main theorem, we provide a complete characterization of the domains admitting nondictorial Arrovian social welfare functions with ties (i.e. including indifference in the range) by introducing a notion of strict decomposability. In the proof, we use integer programming tools, following an approach first applied to social choice theory by Sethuraman, Teo and Vohra ((2003), (2006)). In order to obtain a representation of Arrovian social welfare functions whose range can include indifference, we generalize Sethuraman et al.'s work and specify integer programs in which variables are allowed to assume values in the set {0, 1/2, 1}: indeed, we show that, there exists a one-to-one correspondence between solutions of an integer program defined on this set and the set of all Arrovian social welfare functions - without restrictions on the range.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an axiomatic characterization of difference-form group contests, that is, contests fought among groups and where their probability of victory depends on the difference of their effective efforts. This axiomatization rests on the property of Equalizing Consistency, stating that the difference between winning probabilities in the grand contest and in the smaller contest should be identical across all participants in the smaller contest. This property overcomes some of the drawbacks of the widely-used ratio-form contest success functions. Our characterization shows that the criticisms commonly-held against difference-form contests success functions, such as lack of scale invariance and zero elasticity of augmentation, are unfounded.By clarifying the properties of this family of contest success functions, this axiomatization can help researchers to find the functional form better suited to their application of interest.