10 resultados para markov random field
em Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom
Resumo:
There are both theoretical and empirical reasons for believing that the parameters of macroeconomic models may vary over time. However, work with time-varying parameter models has largely involved Vector autoregressions (VARs), ignoring cointegration. This is despite the fact that cointegration plays an important role in informing macroeconomists on a range of issues. In this paper we develop time varying parameter models which permit cointegration. Time-varying parameter VARs (TVP-VARs) typically use state space representations to model the evolution of parameters. In this paper, we show that it is not sensible to use straightforward extensions of TVP-VARs when allowing for cointegration. Instead we develop a specification which allows for the cointegrating space to evolve over time in a manner comparable to the random walk variation used with TVP-VARs. The properties of our approach are investigated before developing a method of posterior simulation. We use our methods in an empirical investigation involving a permanent/transitory variance decomposition for inflation.
Resumo:
This paper investigates underlying changes in the UK economy over the past thirtyfive years using a small open economy DSGE model. Using Bayesian analysis, we find UK monetary policy, nominal price rigidity and exogenous shocks, are all subject to regime shifting. A model incorporating these changes is used to estimate the realised monetary policy and derive the optimal monetary policy for the UK. This allows us to assess the effectiveness of the realised policy in terms of stabilising economic fluctuations, and, in turn, provide an indication of whether there is room for monetary authorities to further improve their policies.
Resumo:
We propose a non-equidistant Q rate matrix formula and an adaptive numerical algorithm for a continuous time Markov chain to approximate jump-diffusions with affine or non-affine functional specifications. Our approach also accommodates state-dependent jump intensity and jump distribution, a flexibility that is very hard to achieve with other numerical methods. The Kolmogorov-Smirnov test shows that the proposed Markov chain transition density converges to the one given by the likelihood expansion formula as in Ait-Sahalia (2008). We provide numerical examples for European stock option pricing in Black and Scholes (1973), Merton (1976) and Kou (2002).
Resumo:
This paper uses an exogenous increase in income for a specific sub-group in Taiwan to explore the extent to which higher income leads to higher levels of health and wellbeing. In 1995, the Taiwanese government implemented the Senior Farmer Welfare Benefit Interim Regulation (SFWBIR) which was a pure cash injection, approximately US$110 (£70) per month in 1996, to senior farmers. A Difference-in-differences (DiD) approach is used on survey data from the Taiwanese Health and Living Status of Elderly in 1989 and 1996 to evaluate the short term effect of the SFWBIR on self-assessed health, depression, and life satisfaction. Senior manufacturing workers are employed as a comparison group for the senior farmers in the natural experiment because their demographic backgrounds are similar. This paper provides evidence that the increase in income from the SFWBIR significantly improved the mental health of senior farmers by reducing the scale of depression (CES-D) by 1.718, however, it had no significant short term impact on self-assessed health or life satisfaction.
Resumo:
We conduct a field experiment in 31 primary schools in England to test whether incentives to eat fruit and vegetables help children develop healthier habits. The intervention consists of rewarding children with stickers and little gifts for a period of four weeks for choosing a portion of fruit and vegetables at lunch. We compare the effects of two incentive schemes (competition and piece rate) on choices and consumption over the course of the intervention as well as once the incentives are removed and six months later. We find that the intervention had positive effects, but the effects vary substantially according to age and gender. However, we find little evidence of sustained long term effects, except for the children from poorer socio‐economic backgrounds.
Resumo:
We study a business cycle model in which a benevolent fiscal authority must determine the optimal provision of government services, while lacking credibility, lump-sum taxes, and the ability to bond finance deficits. Households and the fiscal authority have risk sensitive preferences. We find that outcomes are affected importantly by the household's risk sensitivity, but not by the fiscal authority's. Further, while household risk-sensitivity induces a strong precautionary saving motive, which raises capital and lowers the return on assets, its effects on fluctuations and the business cycle are generally small, although more pronounced for negative shocks. Holding the stochastic steady state constant, increases in household risk-sensitivity lower the risk-free rate and raise the return on equity, increasing the equity premium. Finally, although risk-sensitivity has little effect on the provision of government services, it does cause the fiscal authority to lower the income tax rate. An additional contribution of this paper is to present a method for computing Markov-perfect equilibria in models where private agents and the government are risk-sensitive decisionmakers.
Resumo:
We provide field experimental evidence of the effects of monitoring in a context where productivity is multi-dimensional and only one dimension is monitored and incentivised. We hire students to do a job for us. The job consists of identifying euro coins. We study the effects of monitoring and penalising mistakes on work quality, and evaluate spillovers on non- incentivised dimensions of productivity (punctuality and theft). We .nd that monitoring improves work quality only if incentives are large, but reduces punctuality substantially irrespectively of the size of incentives. Monitoring does not affect theft, with ten per cent of participants stealing overall. Our setting also allows us to disentangle between possible theoretical mechanisms driving the adverse effects of monitoring. Our .ndings are supportive of a reciprocity mechanism, whereby workers retaliate for being distrusted.
Resumo:
This study investigates the issue of self-selection of stakeholders into participation and collaboration in policy-relevant experiments. We document and test the implications of self-selection in the context of randomised policy experiment we conducted in primary schools in the UK. The main questions we ask are (1) is there evidence of selection on key observable characteristics likely to matter for the outcome of interest and (2) does selection matter for the estimates of treatment eff ects. The experimental work consists in testing the e ffects of an intervention aimed at encouraging children to make more healthy choices at lunch. We recruited schools through local authorities and randomised schools across two incentive treatments and a control group. We document the selection taking place both at the level of local authorities and at the school level. Overall we nd mild evidence of selection on key observables such as obesity levels and socio-economic characteristics. We find evidence of selection along indicators of involvement in healthy lifestyle programmes at the school level, but the magnitude is small. Moreover, We do not find signifi cant di erences in the treatment e ffects of the experiment between variables which, albeit to a mild degree, are correlated with selection into the experiment. To our knowledge, this is the rst study providing direct evidence on the magnitude of self-selection in fi eld experiments.
Resumo:
Vector Autoregressive Moving Average (VARMA) models have many theoretical properties which should make them popular among empirical macroeconomists. However, they are rarely used in practice due to over-parameterization concerns, difficulties in ensuring identification and computational challenges. With the growing interest in multivariate time series models of high dimension, these problems with VARMAs become even more acute, accounting for the dominance of VARs in this field. In this paper, we develop a Bayesian approach for inference in VARMAs which surmounts these problems. It jointly ensures identification and parsimony in the context of an efficient Markov chain Monte Carlo (MCMC) algorithm. We use this approach in a macroeconomic application involving up to twelve dependent variables. We find our algorithm to work successfully and provide insights beyond those provided by VARs.
Resumo:
Time-inconsistency is an essential feature of many policy problems (Kydland and Prescott, 1977). This paper presents and compares three methods for computing Markov-perfect optimal policies in stochastic nonlinear business cycle models. The methods considered include value function iteration, generalized Euler-equations, and parameterized shadow prices. In the context of a business cycle model in which a scal authority chooses government spending and income taxation optimally, while lacking the ability to commit, we show that the solutions obtained using value function iteration and generalized Euler equations are somewhat more accurate than that obtained using parameterized shadow prices. Among these three methods, we show that value function iteration can be applied easily, even to environments that include a risk-sensitive scal authority and/or inequality constraints on government spending. We show that the risk-sensitive scal authority lowers government spending and income-taxation, reducing the disincentive households face to accumulate wealth.