2 resultados para linear differential inclusions
em Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom
Resumo:
This paper suggests a simple method based on Chebyshev approximation at Chebyshev nodes to approximate partial differential equations. The methodology simply consists in determining the value function by using a set of nodes and basis functions. We provide two examples. Pricing an European option and determining the best policy for chatting down a machinery. The suggested method is flexible, easy to program and efficient. It is also applicable in other fields, providing efficient solutions to complex systems of partial differential equations.
Resumo:
This paper applies recently developed heterogeneous nonlinear and linear panel unit root tests that account for cross-sectional dependence to 24 OECD and 33 non-OECD countries’ consumption-income ratios over the period 1951–2003. We apply a recently developed methodology that facilitates the use of panel tests to identify which individual cross-sectional units are stationary and which are nonstationary. This extends evidence provided in the recent literature to consider both linear and nonlinear adjustment in panel unit root tests, to address the issue of cross-sectional dependence, and to substantially expand both time-series and cross sectional dimensions of the data analysed. We find that the majority (65%) of the series are nonstationary with slightly fewer OECD countries’ (61%) series exhibiting a unit root than non-OECD countries (68%).