3 resultados para learning with errors
em Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom
Resumo:
Expectations about the future are central for determination of current macroeconomic outcomes and the formulation of monetary policy. Recent literature has explored ways for supplementing the benchmark of rational expectations with explicit models of expectations formation that rely on econometric learning. Some apparently natural policy rules turn out to imply expectational instability of private agents’ learning. We use the standard New Keynesian model to illustrate this problem and survey the key results about interest-rate rules that deliver both uniqueness and stability of equilibrium under econometric learning. We then consider some practical concerns such as measurement errors in private expectations, observability of variables and learning of structural parameters required for policy. We also discuss some recent applications including policy design under perpetual learning, estimated models with learning, recurrent hyperinflations, and macroeconomic policy to combat liquidity traps and deflation.
Resumo:
We report experiments designed to test between Nash equilibria that are stable and unstable under learning. The “TASP” (Time Average of the Shapley Polygon) gives a precise prediction about what happens when there is divergence from equilibrium under fictitious play like learning processes. We use two 4 x 4 games each with a unique mixed Nash equilibrium; one is stable and one is unstable under learning. Both games are versions of Rock-Paper-Scissors with the addition of a fourth strategy, Dumb. Nash equilibrium places a weight of 1/2 on Dumb in both games, but the TASP places no weight on Dumb when the equilibrium is unstable. We also vary the level of monetary payoffs with higher payoffs predicted to increase instability. We find that the high payoff unstable treatment differs from the others. Frequency of Dumb is lower and play is further from Nash than in the other treatments. That is, we find support for the comparative statics prediction of learning theory, although the frequency of Dumb is substantially greater than zero in the unstable treatments.
Resumo:
We determine he optimal combination of a universal benefit, B, and categorical benefit, C, for an economy in which individuals differ in both their ability to work - modelled as an exogenous zero quantity constraint on labour supply - and, conditional on being able to work, their productivity at work. C is targeted at those unable to work, and is conditioned in two dimensions: ex-ante an individual must be unable to work and be awarded the benefit, whilst ex-post a recipient must not subsequently work. However, the ex-ante conditionality may be imperfectly enforced due to Type I (false rejection) and Type II (false award) classification errors, whilst, in addition, the ex-post conditionality may be imperfectly enforced. If there are no classification errors - and thus no enforcement issues - it is always optimal to set C>0, whilst B=0 only if the benefit budget is sufficiently small. However, when classification errors occur, B=0 only if there are no Type I errors and the benefit budget is sufficiently small, while the conditions under which C>0 depend on the enforcement of the ex-post conditionality. We consider two discrete alternatives. Under No Enforcement C>0 only if the test administering C has some discriminatory power. In addition, social welfare is decreasing in the propensity to make each type error. However, under Full Enforcement C>0 for all levels of discriminatory power. Furthermore, whilst social welfare is decreasing in the propensity to make Type I errors, there are certain conditions under which it is increasing in the propensity to make Type II errors. This implies that there may be conditions under which it would be welfare enhancing to lower the chosen eligibility threshold - support the suggestion by Goodin (1985) to "err on the side of kindness".