4 resultados para learning in projects

em Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report experiments designed to test between Nash equilibria that are stable and unstable under learning. The “TASP” (Time Average of the Shapley Polygon) gives a precise prediction about what happens when there is divergence from equilibrium under fictitious play like learning processes. We use two 4 x 4 games each with a unique mixed Nash equilibrium; one is stable and one is unstable under learning. Both games are versions of Rock-Paper-Scissors with the addition of a fourth strategy, Dumb. Nash equilibrium places a weight of 1/2 on Dumb in both games, but the TASP places no weight on Dumb when the equilibrium is unstable. We also vary the level of monetary payoffs with higher payoffs predicted to increase instability. We find that the high payoff unstable treatment differs from the others. Frequency of Dumb is lower and play is further from Nash than in the other treatments. That is, we find support for the comparative statics prediction of learning theory, although the frequency of Dumb is substantially greater than zero in the unstable treatments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, I look at the interaction between social learning and cooperative behavior. I model this using a social dilemma game with publicly observed sequential actions and asymmetric information about pay offs. I find that some informed agents in this model act, individually and without collusion, to conceal the privately optimal action. Because the privately optimal action is socially costly the behavior of informed agents can lead to a Pareto improvement in a social dilemma. In my model I show that it is possible to get cooperative behavior if information is restricted to a small but non-zero proportion of the population. Moreover, such cooperative behavior occurs in a finite setting where it is public knowledge which agent will act last. The proportion of cooperative agents within the population can be made arbitrarily close to 1 by increasing the finite number of agents playing the game. Finally, I show that under a broad set of conditions that it is a Pareto improvement on a corner value, in the ex-ante welfare sense, for an interior proportion of the population to be informed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

These notes try to clarify some discussions on the formulation of individual intertemporal behavior under adaptive learning in representative agent models. First, we discuss two suggested approaches and related issues in the context of a simple consumption-saving model. Second, we show that the analysis of learning in the NewKeynesian monetary policy model based on “Euler equations” provides a consistent and valid approach.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Incorporating adaptive learning into macroeconomics requires assumptions about how agents incorporate their forecasts into their decision-making. We develop a theory of bounded rationality that we call finite-horizon learning. This approach generalizes the two existing benchmarks in the literature: Eulerequation learning, which assumes that consumption decisions are made to satisfy the one-step-ahead perceived Euler equation; and infinite-horizon learning, in which consumption today is determined optimally from an infinite-horizon optimization problem with given beliefs. In our approach, agents hold a finite forecasting/planning horizon. We find for the Ramsey model that the unique rational expectations equilibrium is E-stable at all horizons. However, transitional dynamics can differ significantly depending upon the horizon.