4 resultados para hierarchical prior
em Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom
Resumo:
In this paper, we forecast EU-area inflation with many predictors using time-varying parameter models. The facts that time-varying parameter models are parameter-rich and the time span of our data is relatively short motivate a desire for shrinkage. In constant coefficient regression models, the Bayesian Lasso is gaining increasing popularity as an effective tool for achieving such shrinkage. In this paper, we develop econometric methods for using the Bayesian Lasso with time-varying parameter models. Our approach allows for the coefficient on each predictor to be: i) time varying, ii) constant over time or iii) shrunk to zero. The econometric methodology decides automatically which category each coefficient belongs in. Our empirical results indicate the benefits of such an approach.
Resumo:
This paper uses an infinite hidden Markov model (IIHMM) to analyze U.S. inflation dynamics with a particular focus on the persistence of inflation. The IHMM is a Bayesian nonparametric approach to modeling structural breaks. It allows for an unknown number of breakpoints and is a flexible and attractive alternative to existing methods. We found a clear structural break during the recent financial crisis. Prior to that, inflation persistence was high and fairly constant.
Resumo:
We analyze and quantify co-movements in real effective exchange rates while considering the regional location of countries. More specifically, using the dynamic hierarchical factor model (Moench et al. (2011)), we decompose exchange rate movements into several latent components; worldwide and two regional factors as well as country-specific elements. Then, we provide evidence that the worldwide common factor is closely related to monetary policies in large advanced countries while regional common factors tend to be captured by those in the rest of the countries in a region. However, a substantial proportion of the variation in the real exchange rates is reported to be country-specific; even in Europe country-specific movements exceed worldwide and regional common factors.
Resumo:
There is a vast literature that specifies Bayesian shrinkage priors for vector autoregressions (VARs) of possibly large dimensions. In this paper I argue that many of these priors are not appropriate for multi-country settings, which motivates me to develop priors for panel VARs (PVARs). The parametric and semi-parametric priors I suggest not only perform valuable shrinkage in large dimensions, but also allow for soft clustering of variables or countries which are homogeneous. I discuss the implications of these new priors for modelling interdependencies and heterogeneities among different countries in a panel VAR setting. Monte Carlo evidence and an empirical forecasting exercise show clear and important gains of the new priors compared to existing popular priors for VARs and PVARs.