2 resultados para hearth carbon blocks
em Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom
Resumo:
Despite increased public interest, policymakers have been slow to enact targets based on limiting emissions under full consumption accounting measures (such as carbon footprints). This paper argues that this may be due to the fact that policymakers in one jurisdiction do not have control over production technologies used in other jurisdictions. The paper uses a regional input-output framework and data derived on carbon dioxide emissions by industry (and households) to examine regional accountability for emissions generation. In doing so, we consider two accounting methods that permit greater accountability of regional private and public (household and government) final consumption as the main driver of regional emissions generation, while retaining focus on the local production technology and consumption decisions that fall under the jurisdiction of regional policymakers. We propose that these methods permit an attribution of emissions generation that is likely to be of more use to regional policymakers than a full global footprint analysis.
Resumo:
In an effort to meet its obligations under the Kyoto Protocol, in 2005 the European Union introduced a cap-and-trade scheme where mandated installations are allocated permits to emit CO2. Financial markets have developed that allow companies to trade these carbon permits. For the EU to achieve reductions in CO2 emissions at a minimum cost, it is necessary that companies make appropriate investments and policymakers design optimal policies. In an effort to clarify the workings of the carbon market, several recent papers have attempted to statistically model it. However, the European carbon market (EU ETS) has many institutional features that potentially impact on daily carbon prices (and associated nancial futures). As a consequence, the carbon market has properties that are quite different from conventional financial assets traded in mature markets. In this paper, we use dynamic model averaging (DMA) in order to forecast in this newly-developing market. DMA is a recently-developed statistical method which has three advantages over conventional approaches. First, it allows the coefficients on the predictors in a forecasting model to change over time. Second, it allows for the entire fore- casting model to change over time. Third, it surmounts statistical problems which arise from the large number of potential predictors that can explain carbon prices. Our empirical results indicate that there are both important policy and statistical bene ts with our approach. Statistically, we present strong evidence that there is substantial turbulence and change in the EU ETS market, and that DMA can model these features and forecast accurately compared to conventional approaches. From a policy perspective, we discuss the relative and changing role of different price drivers in the EU ETS. Finally, we document the forecast performance of DMA and discuss how this relates to the efficiency and maturity of this market.