2 resultados para dynamic learning environments

em Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Incorporating adaptive learning into macroeconomics requires assumptions about how agents incorporate their forecasts into their decision-making. We develop a theory of bounded rationality that we call finite-horizon learning. This approach generalizes the two existing benchmarks in the literature: Eulerequation learning, which assumes that consumption decisions are made to satisfy the one-step-ahead perceived Euler equation; and infinite-horizon learning, in which consumption today is determined optimally from an infinite-horizon optimization problem with given beliefs. In our approach, agents hold a finite forecasting/planning horizon. We find for the Ramsey model that the unique rational expectations equilibrium is E-stable at all horizons. However, transitional dynamics can differ significantly depending upon the horizon.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the impact of anticipated fiscal policy changes in a Ramsey economy where agents form long-horizon expectations using adaptive learning. We extend the existing framework by introducing distortionary taxes as well as elastic labour supply, which makes agents. decisions non-predetermined but more realistic. We detect that the dynamic responses to anticipated tax changes under learning have oscillatory behaviour that can be interpreted as self-fulfilling waves of optimism and pessimism emerging from systematic forecast errors. Moreover, we demonstrate that these waves can have important implications for the welfare consequences of .scal reforms. (JEL: E32, E62, D84)