2 resultados para VAPOR-LIQUID-EQUILIBRIA
em Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom
Resumo:
We report experiments designed to test between Nash equilibria that are stable and unstable under learning. The “TASP” (Time Average of the Shapley Polygon) gives a precise prediction about what happens when there is divergence from equilibrium under fictitious play like learning processes. We use two 4 x 4 games each with a unique mixed Nash equilibrium; one is stable and one is unstable under learning. Both games are versions of Rock-Paper-Scissors with the addition of a fourth strategy, Dumb. Nash equilibrium places a weight of 1/2 on Dumb in both games, but the TASP places no weight on Dumb when the equilibrium is unstable. We also vary the level of monetary payoffs with higher payoffs predicted to increase instability. We find that the high payoff unstable treatment differs from the others. Frequency of Dumb is lower and play is further from Nash than in the other treatments. That is, we find support for the comparative statics prediction of learning theory, although the frequency of Dumb is substantially greater than zero in the unstable treatments.
Resumo:
We report results from an experiment that explores the empirical validity of correlated equilibrium, an important generalization of the Nash equilibrium concept. Specifically, we seek to understand the conditions under which subjects playing the game of Chicken will condition their behavior on private, third–party recommendations drawn from known distributions. In a “good–recommendations” treatment, the distribution we use is a correlated equilibrium with payoffs better than any symmetric payoff in the convex hull of Nash equilibrium payoff vectors. In a “bad–recommendations” treatment, the distribution is a correlated equilibrium with payoffs worse than any Nash equilibrium payoff vector. In a “Nash–recommendations” treatment, the distribution is a convex combination of Nash equilibrium outcomes (which is also a correlated equilibrium), and in a fourth “very–good–recommendations” treatment, the distribution yields high payoffs, but is not a correlated equilibrium. We compare behavior in all of these treatments to the case where subjects do not receive recommendations. We find that when recommendations are not given to subjects, behavior is very close to mixed–strategy Nash equilibrium play. When recommendations are given, behavior does differ from mixed–strategy Nash equilibrium, with the nature of the differ- ences varying according to the treatment. Our main finding is that subjects will follow third–party recommendations only if those recommendations derive from a correlated equilibrium, and further, if that correlated equilibrium is payoff–enhancing relative to the available Nash equilibria.