4 resultados para Urban Complexity
em Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom
Resumo:
Spatial heterogeneity, spatial dependence and spatial scale constitute key features of spatial analysis of housing markets. However, the common practice of modelling spatial dependence as being generated by spatial interactions through a known spatial weights matrix is often not satisfactory. While existing estimators of spatial weights matrices are based on repeat sales or panel data, this paper takes this approach to a cross-section setting. Specifically, based on an a priori definition of housing submarkets and the assumption of a multifactor model, we develop maximum likelihood methodology to estimate hedonic models that facilitate understanding of both spatial heterogeneity and spatial interactions. The methodology, based on statistical orthogonal factor analysis, is applied to the urban housing market of Aveiro, Portugal at two different spatial scales.
Resumo:
This paper adds to the literature on wealth effects on consumption by disentangling house price effects on consumption for mainland China. In a stochastic modelling framework, the riskiness, rate of increase and persistence of house price movements have different implications for the consumption/housing ratio. We exploit the geographical variation in property prices by using a quarterly city-level panel dataset for the period 1998Q1 – 2009Q4 and rely on a panel error correction model. Overall, the results suggest a significant long run impact of property prices on consumption. They also broadly confirm the predictions from the theoretical model.
Resumo:
I develop a model of endogenous bounded rationality due to search costs, arising implicitly from the problems complexity. The decision maker is not required to know the entire structure of the problem when making choices but can think ahead, through costly search, to reveal more of it. However, the costs of search are not assumed exogenously; they are inferred from revealed preferences through her choices. Thus, bounded rationality and its extent emerge endogenously: as problems become simpler or as the benefits of deeper search become larger relative to its costs, the choices more closely resemble those of a rational agent. For a fixed decision problem, the costs of search will vary across agents. For a given decision maker, they will vary across problems. The model explains, therefore, why the disparity, between observed choices and those prescribed under rationality, varies across agents and problems. It also suggests, under reasonable assumptions, an identifying prediction: a relation between the benefits of deeper search and the depth of the search. As long as calibration of the search costs is possible, this can be tested on any agent-problem pair. My approach provides a common framework for depicting the underlying limitations that force departures from rationality in different and unrelated decision-making situations. Specifically, I show that it is consistent with violations of timing independence in temporal framing problems, dynamic inconsistency and diversification bias in sequential versus simultaneous choice problems, and with plausible but contrasting risk attitudes across small- and large-stakes gambles.
Resumo:
This paper critically examines a number of issues relating to the measurement of tax complexity. It starts with an analysis of the concept of tax complexity, distinguishing tax design complexity and operational complexity. It considers the consequences/costs of complexity, and then examines the rationale for measuring complexity. Finally it applies the analysis to an examination of an index of complexity developed by the UK Office of Tax Simplification (OTS).