2 resultados para Unconditional maximum likelihood criterion
em Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom
Resumo:
Spatial heterogeneity, spatial dependence and spatial scale constitute key features of spatial analysis of housing markets. However, the common practice of modelling spatial dependence as being generated by spatial interactions through a known spatial weights matrix is often not satisfactory. While existing estimators of spatial weights matrices are based on repeat sales or panel data, this paper takes this approach to a cross-section setting. Specifically, based on an a priori definition of housing submarkets and the assumption of a multifactor model, we develop maximum likelihood methodology to estimate hedonic models that facilitate understanding of both spatial heterogeneity and spatial interactions. The methodology, based on statistical orthogonal factor analysis, is applied to the urban housing market of Aveiro, Portugal at two different spatial scales.
Resumo:
This paper is inspired by articles in the last decade or so that have argued for more attention to theory, and to empirical analysis, within the well-known, and long-lasting, contingency framework for explaining the organisational form of the firm. Its contribution is to extend contingency analysis in three ways: (a) by empirically testing it, using explicit econometric modelling (rather than case study evidence) involving estimation by ordered probit analysis; (b) by extending its scope from large firms to SMEs; (c) by extending its applications from Western economic contexts, to an emerging economy context, using field work evidence from China. It calibrates organizational form in a new way, as an ordinal dependent variable, and also utilises new measures of familiar contingency factors from the literature (i.e. Environment, Strategy, Size and Technology) as the independent variables. An ordered probit model of contingency was constructed, and estimated by maximum likelihood, using a cross section of 83 private Chinese firms. The probit was found to be a good fit to the data, and displayed significant coefficients with plausible interpretations for key variables under all the four categories of contingency analysis, namely Environment, Strategy, Size and Technology. Thus we have generalised the contingency model, in terms of specification, interpretation and applications area.