3 resultados para Spatial changes
em Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom
Resumo:
Using the framework of Desmet and Rossi-Hansberg (forthcoming), we present a model of spatial takeoff that is calibrated using spatially-disaggregated occupational data for England in c.1710. The model predicts changes in the spatial distribution of agricultural and manufacturing employment which match data for c.1817 and 1861. The model also matches a number of aggregate changes that characterise the first industrial revolution. Using counterfactual geographical distributions, we show that the initial concentration of productivity can matter for whether and when an industrial takeoff occurs. Subsidies to innovation in either sector can bring forward the date of takeoff while subsidies to the use of land by manufacturing firms can significantly delay a takeoff because it decreases spatial concentration of activity.
Resumo:
Using the framework of Desmet and Rossi-Hansberg (forthcoming), we present a model of spatial takeoff that is calibrated using spatially-disaggregated occupational data for England in c.1710. The model predicts changes in the spatial distribution of agricultural and manufacturing employment which match data for c.1817 and 1861. The model also matches a number of aggregate changes that characterise the first industrial revolution. Using counterfactual geographical distributions, we show that the initial concentration of productivity can matter for whether and when an industrial takeoff occurs. Subsidies to innovation in either sector can bring forward the date of takeoff while subsidies to the use of land by manufacturing firms can significantly delay a takeoff because it decreases spatial concentration of activity.
Resumo:
The application of multi-region environmental input-output (IO) analysis to the problem of accounting for emissions generation (and/or resource use) under different accounting principles has become increasingly common in the ecological and environmental economics literature in particular, with applications at the international and interregional subnational level. However, while environmental IO analysis is invaluable in accounting for pollution flows in the single time period that the accounts relate to, it is limited when the focus is on modelling the impacts of any marginal change in activity. This is because a conventional demand-driven IO model assumes an entirely passive supply-side in the economy (i.e. all supply is infinitely elastic) and is further restricted by the assumption of universal Leontief (fixed proportions) technology implied by the use of the A and multiplier matrices. Where analysis of marginal changes in activity is required, extension from an IO accounting framework to a more flexible interregional computable general equilibrium (CGE) approach, where behavioural relationships can be modelled in a more realistic and theory-consistent manner, is appropriate. Our argument is illustrated by comparing the results of introducing a positive demand stimulus in the UK economy using IO and CGE interregional models of Scotland and the rest of the UK. In the case of the latter, we demonstrate how more theory consistent modelling of both demand and supply side behaviour at the regional and national levels effect model results, including the impact on the interregional CO2 ‘trade balance’.