3 resultados para Recursive functions.

em Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traditionally, it is assumed that the population size of cities in a country follows a Pareto distribution. This assumption is typically supported by nding evidence of Zipf's Law. Recent studies question this nding, highlighting that, while the Pareto distribution may t reasonably well when the data is truncated at the upper tail, i.e. for the largest cities of a country, the log-normal distribution may apply when all cities are considered. Moreover, conclusions may be sensitive to the choice of a particular truncation threshold, a yet overlooked issue in the literature. In this paper, then, we reassess the city size distribution in relation to its sensitivity to the choice of truncation point. In particular, we look at US Census data and apply a recursive-truncation approach to estimate Zipf's Law and a non-parametric alternative test where we consider each possible truncation point of the distribution of all cities. Results con rm the sensitivity of results to the truncation point. Moreover, repeating the analysis over simulated data con rms the di culty of distinguishing a Pareto tail from the tail of a log-normal and, in turn, identifying the city size distribution as a false or a weak Pareto law.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the line opened by Kalai and Muller (1997), we explore new conditions on prefernce domains which make it possible to avoid Arrow's impossibility result. In our main theorem, we provide a complete characterization of the domains admitting nondictorial Arrovian social welfare functions with ties (i.e. including indifference in the range) by introducing a notion of strict decomposability. In the proof, we use integer programming tools, following an approach first applied to social choice theory by Sethuraman, Teo and Vohra ((2003), (2006)). In order to obtain a representation of Arrovian social welfare functions whose range can include indifference, we generalize Sethuraman et al.'s work and specify integer programs in which variables are allowed to assume values in the set {0, 1/2, 1}: indeed, we show that, there exists a one-to-one correspondence between solutions of an integer program defined on this set and the set of all Arrovian social welfare functions - without restrictions on the range.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an axiomatic characterization of difference-form group contests, that is, contests fought among groups and where their probability of victory depends on the difference of their effective efforts. This axiomatization rests on the property of Equalizing Consistency, stating that the difference between winning probabilities in the grand contest and in the smaller contest should be identical across all participants in the smaller contest. This property overcomes some of the drawbacks of the widely-used ratio-form contest success functions. Our characterization shows that the criticisms commonly-held against difference-form contests success functions, such as lack of scale invariance and zero elasticity of augmentation, are unfounded.By clarifying the properties of this family of contest success functions, this axiomatization can help researchers to find the functional form better suited to their application of interest.