2 resultados para REPRESENTATIONS OF PARTIALLY ORDERED SETS

em Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study addresses the issue of the presence of a unit root on the growth rate estimation by the least-squares approach. We argue that when the log of a variable contains a unit root, i.e., it is not stationary then the growth rate estimate from the log-linear trend model is not a valid representation of the actual growth of the series. In fact, under such a situation, we show that the growth of the series is the cumulative impact of a stochastic process. As such the growth estimate from such a model is just a spurious representation of the actual growth of the series, which we refer to as a “pseudo growth rate”. Hence such an estimate should be interpreted with caution. On the other hand, we highlight that the statistical representation of a series as containing a unit root is not easy to separate from an alternative description which represents the series as fundamentally deterministic (no unit root) but containing a structural break. In search of a way around this, our study presents a survey of both the theoretical and empirical literature on unit root tests that takes into account possible structural breaks. We show that when a series is trendstationary with breaks, it is possible to use the log-linear trend model to obtain well defined estimates of growth rates for sub-periods which are valid representations of the actual growth of the series. Finally, to highlight the above issues, we carry out an empirical application whereby we estimate meaningful growth rates of real wages per worker for 51 industries from the organised manufacturing sector in India for the period 1973-2003, which are not only unbiased but also asymptotically efficient. We use these growth rate estimates to highlight the evolving inter-industry wage structure in India.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we investigate the ability of a number of different ordered probit models to predict ratings based on firm-specific data on business and financial risks. We investigate models based on momentum, drift and ageing and compare them against alternatives that take into account the initial rating of the firm and its previous actual rating. Using data on US bond issuing firms rated by Fitch over the years 2000 to 2007 we compare the performance of these models in predicting the rating in-sample and out-of-sample using root mean squared errors, Diebold-Mariano tests of forecast performance and contingency tables. We conclude that initial and previous states have a substantial influence on rating prediction.