2 resultados para Professional Identification

em Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years there has been increasing concern about the identification of parameters in dynamic stochastic general equilibrium (DSGE) models. Given the structure of DSGE models it may be difficult to determine whether a parameter is identified. For the researcher using Bayesian methods, a lack of identification may not be evident since the posterior of a parameter of interest may differ from its prior even if the parameter is unidentified. We show that this can even be the case even if the priors assumed on the structural parameters are independent. We suggest two Bayesian identification indicators that do not suffer from this difficulty and are relatively easy to compute. The first applies to DSGE models where the parameters can be partitioned into those that are known to be identified and the rest where it is not known whether they are identified. In such cases the marginal posterior of an unidentified parameter will equal the posterior expectation of the prior for that parameter conditional on the identified parameters. The second indicator is more generally applicable and considers the rate at which the posterior precision gets updated as the sample size (T) is increased. For identified parameters the posterior precision rises with T, whilst for an unidentified parameter its posterior precision may be updated but its rate of update will be slower than T. This result assumes that the identified parameters are pT-consistent, but similar differential rates of updates for identified and unidentified parameters can be established in the case of super consistent estimators. These results are illustrated by means of simple DSGE models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper uses forecasts from the European Central Bank's Survey of Professional Forecasters to investigate the relationship between inflation and inflation expectations in the euro area. We use theoretical structures based on the New Keynesian and Neoclassical Phillips curves to inform our empirical work. Given the relatively short data span of the Survey of Professional Forecasters and the need to control for many explanatory variables, we use dynamic model averaging in order to ensure a parsimonious econometric speci cation. We use both regression-based and VAR-based methods. We find no support for the backward looking behavior embedded in the Neo-classical Phillips curve. Much more support is found for the forward looking behavior of the New Keynesian Phillips curve, but most of this support is found after the beginning of the financial crisis.