6 resultados para Ordered mesoporous silicas
em Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom
Resumo:
In this paper we investigate the ability of a number of different ordered probit models to predict ratings based on firm-specific data on business and financial risks. We investigate models based on momentum, drift and ageing and compare them against alternatives that take into account the initial rating of the firm and its previous actual rating. Using data on US bond issuing firms rated by Fitch over the years 2000 to 2007 we compare the performance of these models in predicting the rating in-sample and out-of-sample using root mean squared errors, Diebold-Mariano tests of forecast performance and contingency tables. We conclude that initial and previous states have a substantial influence on rating prediction.
Resumo:
Using the integer programming approach introduced by Sethuraman, Teo, and Vohra (2003), we extend the analysis of the preference domains containing an inseparable ordered pair, initiated by Kalai and Ritz (1978). We show that these domains admit not only Arrovian social welfare functions \without ties," but also Arrovian social welfare functions \with ties," since they satisfy the strictly decomposability condition introduced by Busetto, Codognato, and Tonin (2012). Moreover, we go further in the comparison between Kalai and Ritz (1978)'s inseparability and Arrow (1963)'s single-peak restrictions, showing that the former condition is more \respectable," in the sense of Muller and Satterthwaite (1985).
Resumo:
We develop tests of the proportional hazards assumption, with respect to a continuous covariate, in the presence of unobserved heterogeneity with unknown distribution at the individual observation level. The proposed tests are specially powerful against ordered alternatives useful for modeling non-proportional hazards situations. By contrast to the case when the heterogeneity distribution is known up to …nite dimensional parameters, the null hypothesis for the current problem is similar to a test for absence of covariate dependence. However, the two testing problems di¤er in the nature of relevant alternative hypotheses. We develop tests for both the problems against ordered alternatives. Small sample performance and an application to real data highlight the usefulness of the framework and methodology.
Resumo:
To date, inequality orderings for ordered response data are only suitable for comparing distributions that share a common median state. In this paper we propose a methodology for comparing distributions irrespective of their medians. We set out to do so by introducing a general pre-ordering and equivalence relation defined over distributions with different median responses, leading us naturally to derive a partial ordering over equivalence classes. We then discuss the implications of our results for the axiomatic derivation of inequality indices for ordered response data.
Resumo:
This paper is inspired by articles in the last decade or so that have argued for more attention to theory, and to empirical analysis, within the well-known, and long-lasting, contingency framework for explaining the organisational form of the firm. Its contribution is to extend contingency analysis in three ways: (a) by empirically testing it, using explicit econometric modelling (rather than case study evidence) involving estimation by ordered probit analysis; (b) by extending its scope from large firms to SMEs; (c) by extending its applications from Western economic contexts, to an emerging economy context, using field work evidence from China. It calibrates organizational form in a new way, as an ordinal dependent variable, and also utilises new measures of familiar contingency factors from the literature (i.e. Environment, Strategy, Size and Technology) as the independent variables. An ordered probit model of contingency was constructed, and estimated by maximum likelihood, using a cross section of 83 private Chinese firms. The probit was found to be a good fit to the data, and displayed significant coefficients with plausible interpretations for key variables under all the four categories of contingency analysis, namely Environment, Strategy, Size and Technology. Thus we have generalised the contingency model, in terms of specification, interpretation and applications area.
Resumo:
This paper discusses how to identify individual-specific causal effects of an ordered discrete endogenous variable. The counterfactual heterogeneous causal information is recovered by identifying the partial differences of a structural relation. The proposed refutable nonparametric local restrictions exploit the fact that the pattern of endogeneity may vary across the level of the unobserved variable. The restrictions adopted in this paper impose a sense of order to an unordered binary endogeneous variable. This allows for a uni.ed structural approach to studying various treatment effects when self-selection on unobservables is present. The usefulness of the identi.cation results is illustrated using the data on the Vietnam-era veterans. The empirical findings reveal that when other observable characteristics are identical, military service had positive impacts for individuals with low (unobservable) earnings potential, while it had negative impacts for those with high earnings potential. This heterogeneity would not be detected by average effects which would underestimate the actual effects because different signs would be cancelled out. This partial identification result can be used to test homogeneity in response. When homogeneity is rejected, many parameters based on averages may deliver misleading information.