3 resultados para Motion-based estimation
em Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom
Resumo:
In this paper we develop methods for estimation and forecasting in large timevarying parameter vector autoregressive models (TVP-VARs). To overcome computational constraints with likelihood-based estimation of large systems, we rely on Kalman filter estimation with forgetting factors. We also draw on ideas from the dynamic model averaging literature and extend the TVP-VAR so that its dimension can change over time. A final extension lies in the development of a new method for estimating, in a time-varying manner, the parameter(s) of the shrinkage priors commonly-used with large VARs. These extensions are operationalized through the use of forgetting factor methods and are, thus, computationally simple. An empirical application involving forecasting inflation, real output, and interest rates demonstrates the feasibility and usefulness of our approach.
Resumo:
In the mid-1940s, American film industry was on its way up to its golden era as studios started mass-producing iconic feature films. The escalating increase in popularity of Hollywood stars was actively suggested for its direct links to box office success by academics. Using data collected in 2007, this paper carries out an empirical investigation on how different factors, including star power, affect the revenue of ‘home-run’ movies in Hollywood. Due to the subjective nature of star power, two different approaches were used: (1) number of nominations and wins of Academy Awards by the key players, and (2) average lifetime gross revenue of films involving the key players preceding the sample year. It is found that number of Academy awards nominations and wins was not statistically significant in generating box office revenue, whereas star power based on the second approach was statistically significant. Other significant factors were critics’ reviews, screen coverage and top distributor, while number of Academy awards, MPAA-rating, seasonality, being a sequel and popular genre were not statistically significant.
Resumo:
This paper develops a new test of true versus spurious long memory, based on log-periodogram estimation of the long memory parameter using skip-sampled data. A correction factor is derived to overcome the bias in this estimator due to aliasing. The procedure is designed to be used in the context of a conventional test of significance of the long memory parameter, and composite test procedure described that has the properties of known asymptotic size and consistency. The test is implemented using the bootstrap, with the distribution under the null hypothesis being approximated using a dependent-sample bootstrap technique to approximate short-run dependence following fractional differencing. The properties of the test are investigated in a set of Monte Carlo experiments. The procedure is illustrated by applications to exchange rate volatility and dividend growth series.