3 resultados para Military bases, American
em Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom
Resumo:
Least Squares estimators are notoriously known to generate sub-optimal exercise decisions when determining the optimal stopping time. The consequence is that the price of the option is underestimated. We show how variance reduction methods can be implemented to obtain more accurate option prices. We also extend the Longsta¤ and Schwartz (2001) method to price American options under stochastic volatility. These are two important contributions that are particularly relevant for practitioners. Finally, we extend the Glasserman and Yu (2004b) methodology to price Asian options and basket options.
Resumo:
Pricing American options is an interesting research topic since there is no analytical solution to value these derivatives. Different numerical methods have been proposed in the literature with some, if not all, either limited to a specific payoff or not applicable to multidimensional cases. Applications of Monte Carlo methods to price American options is a relatively new area that started with Longstaff and Schwartz (2001). Since then, few variations of that methodology have been proposed. The general conclusion is that Monte Carlo estimators tend to underestimate the true option price. The present paper follows Glasserman and Yu (2004b) and proposes a novel Monte Carlo approach, based on designing "optimal martingales" to determine stopping times. We show that our martingale approach can also be used to compute the dual as described in Rogers (2002).
Resumo:
Recent theoretical developments and case study evidence suggests a relationship between the military in politics and corruption. This study contributes to this literature by analyzing theoretically and empirically the role of the military in politics and corruption for the first time. By drawing on a cross sectional and panel data set covering a large number of countries, over the period 1984-2007, and using a variety of econometric methods substantial empirical support is found for a positive relationship between the military in politics and corruption. In sum, our results reveal that a one standard deviation increase in the military in politics leads to a 0.22 unit increase in corruption index. This relationship is shown to be robust to a variety of specification changes, different econometric techniques, different sample sizes, alternative corruption indices and the exclusion of outliers. This study suggests that the explanatory power of the military in politics is at least as important as the conventionally accepted causes of corruption, such as economic development.