2 resultados para Medium design

em Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is motivated by the recent interest in the use of Bayesian VARs for forecasting, even in cases where the number of dependent variables is large. In such cases, factor methods have been traditionally used but recent work using a particular prior suggests that Bayesian VAR methods can forecast better. In this paper, we consider a range of alternative priors which have been used with small VARs, discuss the issues which arise when they are used with medium and large VARs and examine their forecast performance using a US macroeconomic data set containing 168 variables. We nd that Bayesian VARs do tend to forecast better than factor methods and provide an extensive comparison of the strengths and weaknesses of various approaches. Our empirical results show the importance of using forecast metrics which use the entire predictive density, instead of using only point forecasts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are two ways of creating incentives for interacting agents to behave in a desired way. One is by providing appropriate payoff incentives, which is the subject of mechanism design. The other is by choosing the information that agents observe, which we refer to as information design. We consider a model of symmetric information where a designer chooses and announces the information structure about a payoff relevant state. The interacting agents observe the signal realizations and take actions which affect the welfare of both the designer and the agents. We characterize the general finite approach to deriving the optimal information structure for the designer - the one that maximizes the designer's ex ante expected utility subject to agents playing a Bayes Nash equilibrium. We then apply the general approach to a symmetric two state, two agent, and two actions environment in a parameterized underlying game and fully characterize the optimal information structure: it is never strictly optimal for the designer to use conditionally independent private signals; the optimal information structure may be a public signal or may consist of correlated private signals. Finally, we examine how changes in the underlying game affect the designer's maximum payoff. This exercise provides a joint mechanism/information design perspective.