3 resultados para MHD instabilities

em Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom


Relevância:

10.00% 10.00%

Publicador:

Resumo:

An expanding literature articulates the view that Taylor rules are helpful in predicting exchange rates. In a changing world however, Taylor rule parameters may be subject to structural instabilities, for example during the Global Financial Crisis. This paper forecasts exchange rates using such Taylor rules with Time Varying Parameters (TVP) estimated by Bayesian methods. In core out-of-sample results, we improve upon a random walk benchmark for at least half, and for as many as eight out of ten, of the currencies considered. This contrasts with a constant parameter Taylor rule model that yields a more limited improvement upon the benchmark. In further results, Purchasing Power Parity and Uncovered Interest Rate Parity TVP models beat a random walk benchmark, implying our methods have some generality in exchange rate prediction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We analyse the role of time-variation in coefficients and other sources of uncertainty in exchange rate forecasting regressions. Our techniques incorporate the notion that the relevant set of predictors and their corresponding weights, change over time. We find that predictive models which allow for sudden rather than smooth, changes in coefficients significantly beat the random walk benchmark in out-of-sample forecasting exercise. Using innovative variance decomposition scheme, we identify uncertainty in coefficients' estimation and uncertainty about the precise degree of coefficients' variability, as the main factors hindering models' forecasting performance. The uncertainty regarding the choice of the predictor is small.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper extends the Nelson-Siegel linear factor model by developing a flexible macro-finance framework for modeling and forecasting the term structure of US interest rates. Our approach is robust to parameter uncertainty and structural change, as we consider instabilities in parameters and volatilities, and our model averaging method allows for investors' model uncertainty over time. Our time-varying parameter Nelson-Siegel Dynamic Model Averaging (NS-DMA) predicts yields better than standard benchmarks and successfully captures plausible time-varying term premia in real time. The proposed model has significant in-sample and out-of-sample predictability for excess bond returns, and the predictability is of economic value.